“Mechanism of Fluid-Mud Interactions under Waves”

Theory and Modeling

Yuming Liu, Chiang C. Mei, Dick K.P. Yue
Massachusetts Institute of Technology

Lian Shen
Johns Hopkins University
Mechanisms of Wave Dissipation over Muddy Seabed

I. Direct Wave Interactions

II. Indirect Wave Interactions

III. Resonant Wave-Wave Interactions

IV. Shear Unstable and Turbulent Mud-Flow Interactions

V. Generalized Large-Scale Broad-Band Wave Mud-Bottom Interactions
I. Direct wave Interactions

Indirect Wave Interactions

Resonant wave-wave Interactions

Shear Unstable and Turbulent mud-flow Interactions

Proposed Mechanisms:
- Surface wave interaction with Newtonian (viscous) or non-Newtonian (visco-elastic/visco-plastic) mud flow
- Modeling the mud as a rough bottom of rigid; elastic; thin boundary layer; porous; or poro-elastic material

Assumptions:
- Linear or weakly nonlinear long waves
- Laminar mud flow
- Finite mud depth / thin mud depth / zero mud depth

Proposed Approaches:
- Asymptotic theoretical analysis
- Direct wavefield simulations with physics-based wave dissipation models
I. Direct wave Interactions

II. Indirect Wave Interactions

Resonant wave-wave Interactions

Shear Unstable and Turbulent mud-flow Interactions

Proposed Mechanisms:
- Resonant or near-resonant interactions of long and short waves
- Long wave generation associated with radiation stress
- Dissipative interaction of long wave with mud bottom (mechanism I)
- Short wave attenuation via long-short wave interactions

Assumptions:
- Nonlinear water waves
- Laminar mud flow
- Finite mud depth / thin mud depth / zero mud depth

Proposed Approaches:
- Asymptotic theoretical analysis
- Direct wavefield simulations with physics-based wave dissipation models
I. Direct wave Interactions

II. Indirect Wave Interactions

III. Resonant wave-wave Interactions

Proposed Mechanisms:
- Resonant interaction of surface waves, mud waves, and/or wavy mud bottom

Assumptions:
- Nonlinear water waves, mud waves and wavy mud bottom
- Low mud concentration
- Laminar mud flow

Proposed Approaches:
- Asymptotic theoretical analysis
- Direct multi-layer wavefield simulations
Proposed Mechanisms:
- Shear flow instability of water-mud interface
- Water wave interaction with turbulent mud flow

Assumptions:
- Low mud concentration
- Turbulent mud flow

Proposed Approaches:
- Stability analysis of shear mud flow
- CFD using direct numerical simulations (DNS) and large eddy simulations (LES)
- Coupled direct wavefield simulations with CFD mud flow
MURI Theory & Modeling

Perturbation Theory $O(\lambda/\varepsilon^n)$
- Cross validation
- Shear instability characteristics
- Parameter for simulations

Direct Wavefield Simulation $O(100\lambda)$
- Cross validation
- Interfacial boundary conditions
- Parameters for simulations
- Dissipation model development

DNS/LES $O(\lambda) \sim O(10)\lambda$
- Kinematic and dynamic boundary conditions on interface
- Mud energy dissipation for wavefield simulation

Laboratory Experiments $O(10\lambda)$ / Field Measurements $O(100\lambda)$
- Mud properties
- Range of validity of assumptions
- Guidance for lab/field setup and measurements
- Cross validation

- Mud properties
- Initial/boundary conditions for wavefield simulations
- Guidance for lab/field setup and measurements
- Validation and cross validation
- Parameterization of wave dissipation models

- Mud properties
- Shear/turbulence mud flow characteristics
- Validation and cross calibration
Assumptions:
- Weak nonlinearity
- Laminar mud motion
- Shallow → thick mud layer depth
- Long → intermediate mud wavelengths
- Narrowband → broadband mud waves
- Horizontal → sloping bed
- Visco-plastic mud flow

Long wave attenuation over muddy seabeds
— Rate of energy decrease:

\[
\frac{h}{H} \ll 1, \quad \frac{\delta_m}{h} \ll 1; \quad kA \ll 1, \quad kH = O(1)
\]

\[
\frac{\tau_{fl}}{H} \frac{\partial U}{\partial t} = O\left(\frac{f A}{2 H} \left(1 - \frac{u_m}{U}\right)^2\right) \ll 1
\]

\[
\frac{d}{dx} \left(\rho g A^2 C_g\right) = -(D_I + D_Y + D_b)
\]

\[
D_Y = \tau_o \frac{\partial u_b}{\partial y}
\]

\[
D_b = \mu \int_{-h}^{-h+\gamma} \left(\frac{\partial u_b}{\partial y}\right)^2 \, dy
\]

Liu & Mei 1987
CFD (DNS & LES) Simulations of Fluid-Mud Interactions under Waves

Objectives:
• physical understanding of vortical and turbulent mud flow structure and statistics under waves
• identify and quantify turbulent dissipation processes in mud flows; develop dissipation models for direct wave simulation
• direct comparison and cross calibration and validation of CFD with measurements and other theories

Approach:
• DNS and LES of vortical & turbulent mud flow
• non-Newtonian inhomogeneous mud properties
• coupling of mud flow with surface wave motion across lutocline
• inclusion of mud concentration transport

Expected outcomes:
• detailed flow and mud concentration descriptions
• CFD-based research tool for vortical and turbulent mud flow mechanisms
• parameterization of mud dissipation models
Simulation and Modeling of Nonlinear Water, Mud Layer and Mud Bottom Wave-Wave Interactions over Large Scales

- Direct phase-resolved simulations
- Physics-based modeling of wave dissipation by mud bottom guided by asymptotic theories and CFD for the mud layer
- Evolution of large-scale broadband wavefield propagating over muddy seabed utilizing parallelized HPC computations
- Validation, cross-calibration and parameterization of dissipation modeling by direct quantitative comparisons to laboratory experiments and field measurements
- Development of efficacious dissipation models for phase-averaged wavefield prediction tools (such as SWAN)

Close-up of rogue wave evolution in a large wavefield of 30km × 30km
ONR Mud/MURI Kick-off Meeting, Baltimore, January 15, 2007

“Mechanism of Fluid-Mud Interactions under Waves”

Theory and Modeling

- Development of Perturbation Theories for Wave Dissipation Over Fluid Mud (Chiang Mei)
- CFD (DNS & LES) Simulations of Fluid-Mud Interactions under Waves (Lian Shen)
- Simulation and Modeling of Nonlinear Water, Mud Layer and Mud Bottom Wave-Wave Interactions over Large Scales (Yuming Liu)