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ABSTRACT 
Open cross-section, thin-walled, cold-formed steel columns have at 
least three competing buckling modes: local, distortional, and Euler 
(i.e., flexural or flexural-torsional) buckling. Current North American 
design specifications for cold-formed steel columns ignore local 
buckling interaction and do not provide an explicit check for 
distortional buckling. Closed-form prediction of the buckling stress in 
the local mode, including interaction of the connected elements, and the 
distortional mode, including consideration of the elastic and geometric 
stiffness at the web/flange juncture, are provided and shown to agree 
well with numerical methods. Numerical analyses and experiments 
indicate post-buckling capacity in the distortional mode is lower than in 
the local mode. Existing experiments on cold-formed channel, zed, and 
rack columns indicate inconsistency and systematic error in current 
design methods and provide validation for alternative methods. A new 
method is proposed for design that explicitly incorporates local, 
distortional and Euler buckling, does not require calculations of 
effective width and/or effective properties, gives reliable predictions 
devoid of systematic error, and provides a means to introduce rational 
analysis for elastic buckling prediction into the design of thin-walled 
columns. 

INTRODUCTION 
Compared with conventional structural columns, the pronounced role 
of instabilities complicates behavior and design of thin-walled columns. 
Elastic buckling analysis of open cross-section, thin-walled columns 
typically reveal at least three buckling modes: local, distortional, and 
Euler (global). Finite strip analysis of a cold-formed steel lipped 
channel in pure compression (Figure 1) shows that for practical 



 

member lengths all modes occur at stresses low enough that they must 
be considered in understanding and predicting behavior. Therefore, in 
addition to usual considerations for columns: material non-linearity 
(e.g., yielding), imperfections, residual stresses, etc., the individual role 
and potential for interaction of buckling modes must also be 
considered. 
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Figure 1 Finite strip analysis of a lipped channel in compression 

Work in the last two decades (see Schafer 2000 for full details) has 
added much to our understanding of thin-walled columns, but a 
consistent design method that incorporates current knowledge is 
lacking. The combination of more refined methods for local and 
distortional buckling prediction, improved understanding of the post-
buckling strength and imperfection sensitivity in distortional failures, 
and the relatively large amount of available experimental data allow for 
a re-assessment of existing design methods and development of new 
procedures. Consistent integration of local, distortional and Euler 
buckling into the design of thin-walled columns is needed. 

ELASTIC BUCKLING 
Local Buckling Prediction 
Closed-form prediction of local buckling is examined using two 
methods: the element approach, and a semi-empirical interaction 
approach. The element approach is the classic solution for buckling of 



 

an isolated plate. For lipped channel and zed columns with web depth, 
h, flange width, b, and lip length, d, the local buckling stress (

�crf ) is: 
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For the element approach local buckling of a member may be 
approximated by taking the minimum of Eq.’s 1-3, or weighted 
averages. Alternatively, local interaction may be ignored; current 
design largely follows this approach (AISI 1996). 

The semi-empirical interaction approach accounts for local buckling 
interaction in a single connected element. Expressions for k are 
determined for both flange/lip local buckling and flange/web local 
buckling by empirical close-fit solutions to finite strip analysis results. 
The solutions for k (of Eq. 2) including interactions are: 
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Member local buckling  may be predicted by the minimum of Eq. 4 and 
the appropriate expression from Eq. 5 or 6 and substituting into Eq. 2. 

Distortional Buckling Prediction 
Methods for closed-form prediction in the distortional mode include 
Desmond et al. (1981) as employed in North American design 



 

specifications (AISI 1996), and Lau and Hancock (1987) as employed 
in Australian/New Zealand design practice. Closed-form prediction of 
distortional buckling of beams is derived in Schafer and Peköz (1999); 
extension of this method to columns is completed here. The rotational 
stiffness (kφ) at the juncture of the flange and the web may be 
expressed as the summation of the elastic and stress dependent 
geometric stiffness terms with contributions from both the flange and 
the web 
 ( ) ( )
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Buckling ensues when the elastic stiffness at the web/flange juncture is 
eroded by the geometric stiffness, i.e., when 
 0k =φ  (8) 
If the stress dependent portion of the geometric stiffness is linearized 
and written explicitly then the critical buckling stress for distortional 
buckling (fcrd) may be found as 
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Expressions for the flange remain unchanged from that of the 
previously derived work on beams, therefore: 
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All expressions with subscript f (Ixf, Iyf, Jf etc.) refer to section 
properties for the flange alone. Explicit expressions for all quantities in 
Eq.’s 11 and 12 are provided in Schafer and Peköz (1999). 



 

The mechanical model employed for the web is a single, simply 
supported, lower order, plate bending, finite strip (Cheung and Tham 
1998). The rotational stiffness contribution of the web at the web/flange 
juncture is assumed equal at each end. When the lateral translation of 
the web at the web/flange juncture is restrained, expressions simplify 
greatly (see Schafer 2000 for complete details): 
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Considering the lateral translation of the web at the web/flange juncture 
free leads to overly conservative predictions of the distortional buckling 
stress and is thus not detailed here. Determination of the critical length 
for distortional buckling of columns follows that of the previous 
derivation for beams, with appropriate substitutions reflecting Eq.’s 13 
and 14. The resulting critical length is: 
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The elastic distortional buckling stress (fcrd) is found by determining the 
critical length, Lcr, using Eq. 15, substituting L = Lcr into Eq.’s 11 – 14 
to determine the appropriate rotational stiffness terms and then using 
Eq. 10 to calculate the buckling stress. 

Euler Buckling Prediction 
Closed-form predictions of the Euler buckling modes for x-axis and y-
axis flexural buckling as well as flexural-torsional buckling are given in 
current design specifications (e.g., AISI 1996). 

Accuracy of Elastic Buckling Models 
Accuracy of the closed-form methods are summarized in Table 2. For 
local buckling prediction the semi-empirical interaction model (Eq.’s 4-
6) is more accurate than the element model (Eq.’s 1-3). Local buckling 
prediction by the element model is only appropriate when the web 
depth (h) and flange width (b) are approximately equal (h ≅  b). For 



 

distortional buckling prediction current design specifications (AISI 
1996) are flawed or inapplicable, while both Lau and Hancock (1987) 
and the proposed method (Eq.’s 7-15) work reasonably well. For 
members with slender webs and small flanges the Lau and Hancock 
(1987) approach conservatively converges to a buckling stress of zero 
(these members are ignored in the summary statistics of Table 2). For 
the same members, the proposed method converges to the correct 
solution: the web local buckling stress. 

Table 1 Member geometry for elastic buckling study 
h/b h/t b/t d/t

max min max min max min max min count
Schafer (1997) Members 3.0 1.0 90 30 90 30 15.0 2.5 32
Commercial Drywall Studs 4.6 1.2 318 48 70 39 16.9 9.5 15
AISI Manual C's 7.8 0.9 232 20 66 15 13.8 3.2 73
AISI Manual Z's 4.2 1.7 199 32 55 18 20.3 5.1 50

7.8 0.9 318 20 90 15 20.3 2.5 170  
 

Table 2 Performance of prediction methods for elastic buckling 
Local Distortional

  (fcr)true    (fcr)true    (fcr)true    (fcr)true    (fcr)true  
(fcr)element (fcr)interact (fcr)Schafer (fcr)Hancock (fcr)AISI

All Data avg. 1.34 1.03 0.93 0.96 0.79
st.dev. 0.13 0.06 0.05 0.06 0.33
max 1.49 1.15 1.07 1.08 1.45
min 0.96 0.78 0.81 0.83 0.18

count 149 149 89 89 89
Schafer (1997) Members avg. 1.16 1.02 0.92 0.96 1.09

st.dev. 0.15 0.08 0.07 0.06 0.16
Commercial Drywall Studs avg. 1.38 1.07 0.93 1.00 0.81

st.dev. 0.09 0.05 0.02 0.07 0.26
AISI Manual C's avg. 1.33 1.01 0.93 0.99 0.81

st.dev. 0.13 0.07 0.05 0.03 0.26
AISI Manual Z's avg. 1.39 1.04 0.92 0.92 0.41

st.dev. 0.03 0.04 0.03 0.06 0.18
(fcr)true = local or distoritonal buckling stress from finite strip analysis
(fcr)element = minimum local buckling stress of the web, flange and lip via Eq.'s 1-3
(fcr)interact = minimum local buckling stress using the semi-empirical equations (Eq.'s 4-6)
(fcr)Schafer = distortional buckling stress via Eq.'s 7-15
(fcr)Hancock = distortional buckling stress via Lau and Hancock (1987)
(fcr)AISI = buckling stress for an edge stiffened element via AISI (1996) from Desmond et al. (1981)  
ULTIMATE STRENGTH 
Numerical Studies on Distortional Failures 
Nonlinear finite element analysis of an isolated flange and lip, 
compressed to failure, is reported in Schafer and Peköz (1999). The 



 

ABAQUS model uses nine-node reduced integration shell elements, 
elastic-plastic material with strain hardening, and imperfections and 
residual stresses as suggested in the modeling guidelines for cold-
formed steel by Schafer and Peköz (1998). From this analysis it is 
concluded that: distortional failures have lower post-buckling capacity 
than local failures, distortional buckling may control the failure 
mechanism even when the elastic distortional buckling stress (fcrd) is 
higher than the elastic local buckling stress (

�crf ), and distortional 
failures have higher imperfection sensitivity. Further analysis on 
complete lipped channel columns (geometry summarized as Schafer 
1997 Members in Table 1) supports these conclusions; except that 
reduction of the post-buckling capacity for distortional failures is less 
in the members than observed in models of the isolated flange and lip. 

Distortional Failures of Rack Columns 
The most extensive experimental work on the strength of cold-formed 
steel columns failing in the distortional mode is from the University of 
Sydney: Lau and Hancock (1987), Kwon and Hancock (1992), 
Hancock et al. (1994). Compression tests were conducted on: (a) lipped 
channels, (b) rack column uprights, (c) rack column uprights with 
additional outward edge stiffeners, (d) hats, and (e) lipped channels 
with a web stiffener as shown in Figure 2. The column curve fit to the 
distortional buckling failures may be expressed as: 
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where: Pn is the nominal capacity in distortional buckling 
P is the squash load (P = Py = Agfy) when interaction with 

other modes is not considered, otherwise P = Agf, where f 
is the limiting stress of a mode that may interact 

Pcrd is the critical elastic distortional buckling load (Agfcrd) 

Figure 2 provides strong evidence that if failure is known to occur in 
the distortional mode, then the elastic distortional buckling load (stress) 
may be used to directly predict the ultimate strength. 
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Figure 2 Columns failing in distortional mode (Sydney tests) 

Experiments on lipped channel and zed Columns 
To evaluate existing and proposed methods for the design of cold-
formed steel columns experimental data on lipped channel and zed 
columns are gathered (Thomasson 1978, Loughlan 1979, Mulligan 
1983, Peköz 1987, Polyzois and Charnvarnichborikarn 1993, Miller 
and Peköz 1994). Only unperforated lipped channel and zed sections, 
with 90 degree edge stiffeners, tested in a pin-pin configuration are 
selected. The geometry of the tested sections is summarized in Table 3. 
The available experimental data on lipped channels represents a wide 
variety of sections: slender webs, slender flanges, and relatively long 
lips are all included. However, in 95 out of 102 members h/b is greater 
than 1.6. Therefore, in most members the local buckling stress is lower 
than the distortional buckling stress due to the high slenderness of the 
web (only members with small lip length are an exception). For the 
lipped zed columns h/b ratios are similar to those of the lipped channels 
– thus this data suffers from the same limitations. However, the 
researchers specifically investigated the case of small, or no edge 
stiffening lip. 



 

Table 3 Geometry of experimental data on lipped channel columns 
h/b h/t b/t d/t  

max min max min max min max min count 
lipped channel columns          
Loughlan (1979) 5.0 1.6 322 91 80 30 33 11 33 
Miller and Pekoz (1994) 4.6 2.5 170 46 38 18 8 5 19 
Mulligan (1983) 2.9 1.0 207 93 93 64 16 14 13 
Mulligan (1983) Stub Columns 3.9 0.7 353 65 100 33 22 7 24 
Thomasson (1978) 3.0 3.0 472 207 159 69 32 14 13 

summary 5.0 0.7 472 46 159 18 33 5 102 
lipped zed columns          
Polyzois  et al.  (1993) 2.7 1.5 137 76 56 30 36 0 85 
 

Experiments on Lipped Channels with Web Stiffeners 
Thomasson (1978) tested cold-formed columns with up to two 
stiffeners in the web. The members without web stiffeners are recorded 
in the previous section. The tests included channels with slender webs, 
flanges, and lips – thickness as low as 0.63 mm (0.025 in.). Initial 
testing of specimens with an intermediate stiffener buckled in a 
distortional mode. In subsequent tests a bar was attached to the lips of 
the channels to restrict symmetric distortional buckling.  

COLUMN DESIGN METHODS 
Current thin-walled column design requires identification of the failure 
mode/mechanism of interest (e.g., local buckling), determination of 
elastic buckling characteristics (e.g., fcr), and calculation of ultimate 
strength using empirical expressions – that are a function of material 
(e.g., fy) and elastic buckling (e.g., fcr). For a given failure mode, the 
elastic buckling calculations may be organized into two groups: (1) 
element methods, e.g., Eq.’s 1-3 for local buckling, or (2) member 
methods, which include closed-form expressions (e.g., Eq’s 4-6 for 
local buckling, Eq.’s 7-15 for distortional buckling) and numerical 
methods (e.g., finite strip analysis or finite element analysis). Ultimate 
strength calculation generally includes one of two basic approaches: 
effective width or column curve / “direct strength” methods. 

Effective width uses empirical expressions to determine the portion of 
an element which is effective in resisting the load at the full applied 



 

stress (an element is a part of a member: i.e., the flange, web, lip, etc.). 
For example, the effective width method commonly implemented in 
design specifications: 
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where: beff is the effective width of an element with gross width b  
f is the yield stress (f = fy) when interaction with other modes 

is not considered, otherwise f is the limiting stress of a 
mode interacting with local buckling 

�crf  is the local buckling stress 
Column curve, or “direct strength” methods use gross properties of a 
member to determine the reduced strength of a column in a given mode 
due to buckling and/or yielding. Column curves have been typically 
applied to Euler buckling modes such as: 
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where: Pn is the nominal capacity 
λc=(fy/fe)1/2, and fe is Euler buckling stress (min of flexural and 

flexural-torsional, with appropriate braced lengths). 
fy is the yield stress. 

Direct strength methods are the extension of column curves to others 
modes such as local and distortional buckling, e.g., Eq. 16 for 
distortional buckling. Based on existing direct strength work for beams 
(Schafer and Peköz 1998b), the following form is suggested for local 
buckling of columns: 
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where: Pn is the nominal capacity  
P is the squash load (P = Py = Agfy) except when interaction 

with other modes is considered, then P = Agf, where f is 
the limiting stress of the interacting mode. 

�crP  is the critical elastic local buckling load (Ag �crf ) 



 

Three different assumptions on the level of interaction between local 
(L), distortional (D) and Euler (E) modes are considered (see summary 
below). Simultaneous L+D+E interaction is not considered in any of 
the methods. Interaction is considered by modifying the limiting stress 
in the strength equation. For example, interaction with Euler buckling 
is completed by limiting f used in Eq.’s 16, 17 or 19 to fn of Eq. 18. 
Details and complete design examples for the eleven considered 
methods are given in Schafer (2000) only a summary is given here: 
A1: Current Practice (AISI 1996) 
A2: Current Practice with a distortional check 
B1: Effective width with L+E and D interactions considered 
B2: Direct Strength (hand*) with L+E and D interactions considered 
B3: Direct Strength (numeric**) with L+E and D interactions  
C1: Effective width with L+E and D+E interactions considered 
C2: Direct Strength (hand) with L+E and D+E interactions considered 
C3: Direct Strength (numeric) with L+E and D+E interactions  
D1: Effective width with L+D, L+E and D+E interactions considered 
D2: Direct Strength (hand) with L+D, L+E and D+E interactions  
D3: Direct Strength (numeric) with L+D, L+E and D+E interactions  
* hand methods use the formulas presented herein for buckling 
** numeric methods use finite strip for buckling prediction 

PERFORMANCE OF DESIGN METHODS 
Current Practice (A1) 
For common lipped channels and zeds average performance is 6% 
unconservative for method A1. Lack of an explicit treatment for 
distortional buckling does not introduce significant error for common 
members; but, ignoring local web/flange interaction does result in 
systematic error. Members with high web slenderness (h/t), consistently 
give unconservative predictions. Members with high h/t and h/b also 
suffer from systematically unconservative predictions. For local 
buckling in element approaches, as used in current design (as well as 
methods B1, C1, and D1) no matter how high the slenderness of the 
web becomes it has no effect on the solution for the flange. 



 

Experimental data on zed sections further highlights these issues, and 
also demonstrates additional difficulties with empirical expressions in 
current use. Consider the A1 (AISI) results in Figure 3, for small lip 
length (d), when distortional buckling controls, predictions are 
adequate. However, for intermediate d, as behavior transitions from 
distortional to local predictions may be significantly unconservative 
(e.g., d ~ 20 in Figure 3) due to ignoring local web/flange interaction. 
Finally, for large d predicted strength is overly conservative – and 
generally follows the wrong trend. While “on average” current methods 
may be adequate, systematic errors exist and can be rectified. 

Current Practice with a Distortional Check (A2) 
For common members adding a separate distortional buckling check to 
current methods does not significantly benefit prediction. Instead, 
errors relate primarily to local web/flange interaction. Nonetheless, 
rack sections, intermediately stiffened sections, high strength steel 
sections, and other shapes prone to distortional buckling do require 
accurate, reliable design methods, and would benefit from a distortional 
buckling check, even the simple check used in this method. 

Alternative Effective Width Method (B1) 
Current design uses an element based effective width method for 
determining strength. However, buckling predictions are not always 
based on simple element methods (i.e., Eq.’s 1-3), but rather on 
empirical corrections that include limited aspects of local buckling 
interaction and even distortional buckling. If distortional buckling is 
treated separately from local buckling then many of the empirical 
corrections can be removed and replaced by simple expressions (e.g., 
Eq.’s 1-3). This approach is investigated in methods B1, C1 and D1. 

The predicted strength for B1, (see Figure 3), is the minimum of the 
distortional buckling curve and the local buckling curve. Strength in the 
distortional mode is well predicted, but strength in the local mode 
suffers from systematic error due to ignoring web/flange interaction. 
Method B1 provides an upper bound solution, works as well as existing 
design methods (A1), removes problems with the strength prediction as 



 

lip length is increased, and explicitly separates local and distortional 
modes in a manner more consistent with observed behavior. 
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Figure 3 Performance of method A1(AISI) and B1 for sample of Z’s 

Direct Strength Methods (B2 and B3) 
The direct strength methods are based on the use of separate strength 
(column) curves for local (Eq. 19) and distortional (Eq. 16) buckling. 
Method B2 relies on hand methods for predicting the local and 
distortional buckling stress (Eq.’s 4-6 and 7-15), while method B3 uses 
numerical methods (finite strip analysis). For lipped channel and zed 
section data the performance of the strength curves is shown as 
slenderness vs. strength in Figure 4 and summarized in Table 5. The 
method performs well, and given typical scatter in column data, 
appears to be a good predictor over a wide range of slenderness. The 
increased accuracy of the method (over methods A1, A2 and B1) 
occurs due to improvements in the local buckling prediction. Again 
using the zed column data as an example, the local buckling curves for 
direct strength methods B2 or B3 (Figure 5) can be compared with the 
element based methods B1 or A1 (Figure 3) to demonstrate that local 
web/flange interaction is the key difference in the methods.  
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Figure 4 Slenderness vs. strength for C and Z sections, method B3 
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Figure 5 Performance of method B3 for sample of zed columns 



 

Examination of the data with respect to h/t, h/t·h/b, and distortional 
slenderness, as well as other variables reveals no systematic error. The 
direct strength method postulates that if elastic critical buckling loads 
in the local and distortional mode are known this information is enough 
to determine the member strength – for this data, the notion appears 
validated. 

Distortional and Euler Interaction Methods (C1,C2,C3) 
Design methods C1, C2, and C3 are nearly identical to their 
counterparts; methods B1, B2, and B3 respectively, except that in the 
strength calculation for distortional buckling interaction with Euler 
buckling is considered (f limited to fn). For the lipped channel and zed 
sections little overall difference occurs when distortional and Euler 
interaction is considered. Interaction of distortional buckling with Euler 
buckling cannot be definitively recognized nor rejected on this basis. 
This is discussed in more detail in Schafer (2000). 
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Figure 6 Slenderness vs. strength, all available column data (channels, 

zeds, C’s with int. web stiffeners, racks, racks with compound lips) 



 

Direct Strength - Distortional & Euler Interaction (C3) 
Overall performance of the direct strength method (C3) for all 
experimental data is shown in Figure 6. Individual test to predicted 
ratios for the channel and zed sections are in Table 5, except for 
Thomasson’s data with web stiffeners (note an attached bar restricting 
the symmetrical distortional mode is used in those tests, thus 
antisymmetric distortional buckling is used for fcrd) the average test to 
predicted ratio is 0.94 with a standard deviation of 0.13, and for the 
University of Sydney data the test to predicted ratio is 1.01 with a 
standard deviation of 0.07. Though scatter certainly exists, the direct 
strength approach is viable as a general method for prediction of the 
strength of cold-formed steel columns in local, or distortional buckling 
with consideration of interaction with Euler buckling. 

Local and Distortional Interaction Methods (D1,D2,D3) 
All “D” methods (D1, D2 and D3) allow local and distortional 
interaction and perform poorly (overly conservative). Interaction may 
still exist between these two modes (e.g. in perforated rack columns 
Baldassino and Hancock 1999), but in the available data, local and 
distortional interaction does not appear significant.  

DISCUSSION 
Reliability 
Table 4 presents the reliability of the examined design methods, 
assessed by calculating the resistance factor (φ) for a reliability (β) of 
2.5 via the guidelines of Section F in AISI (1996). Continued use of φ ~ 
0.85 appears appropriate for cold-formed steel columns. 

Restriction of the Distortional Mode 
In many cases attachments to other members (e.g. sheeting), as well as 
discrete braces may hinder the distortional mode and thus increase the 
strength. For discrete braces the best current practice is to compare the 
unbraced length (Lm) with the half-wavelength of the mode (Lcr of Eq. 
15). If Lm < Lcr it may be used in place of Lcr in Eq’s 11-14. The 
bracing should restrict rotation of the flange and cause the distortional 
buckling wave to occur within the unbraced segment. 



 

Table 4 Resistance Factors (φ) for the Design Methods by Limit State 
D or

Design method L+E D+E L+D All Data1

A1: AISI (1996) Specification 0.79 0.82
A2: AISI (1996) plus distortional check 0.78 0.94 0.83
B1: Effective width with distortional check 0.75 0.84 0.81
B2: Direct Strength by hand w/ dist. check 0.82 0.92 0.86
B3*: Direct Strength numerical wi/ dist. check 0.79 0.90 0.84
C1: same as B1 but consider D+E interaction 0.75 0.84 0.81
C2: same as B2 but consider D+E interaction 0.82 0.89 0.86
C3*: same as B3 but consider D+E interaction 0.80 0.89 0.84
D1: same as C1 but consideer D+L interaction 0.72 0.81 0.88
D2: same as C2 but consider D+L interaction 0.73 0.99 0.80 0.89
D3: same as C3 but consider D+L interaction 0.66 0.70 0.70 0.85
1 resistance factor calculations for "all data" use a weighted standard deviation, i.e., the standard 
deviation for all the data is weighted by the number of samples conducted by each researcher.
* resistance factors calculated for methods B3 and C3 include Thomasson's data 
as well as all the cited University of Sydney data. Other methods only include the
lippped channel and Z's used in this report.  

Recommendations for Column Design 
Two methods are recommended for thin-walled column design: C1 and 
C2/C3. If current design practice continues with element based 
effective width procedures then method C1 provides the best alternative 
to current practice. C1 removes complicated empirical expressions for 
local buckling and replaces them with simple formula (Eq.’s 1-3) and 
adds an explicit check on distortional buckling. Compared with current 
practice (method A1, AISI 1996) adoption of C1 favors members with 
longer lips (higher d/b) For common lipped channel and zed members 
the average change in predicted strength is less than 1%. 

Whether implemented as a traditional hand method (C2) or one that 
allows rational analysis for elastic buckling determination (C3) the 
direct strength method provides a reliable alternative design procedure 
for thin-walled compression members. The method holds several 
advantages: calculations do not have to be performed for individual 
elements, interaction of the elements (e.g., in local buckling) is 
accounted for, distortional buckling is explicitly treated as a unique 
limit state, a means for introducing rational analysis through numerical 
prediction of elastic buckling is provided, and thus a general method 
for design of members with stiffener configurations or other geometries 



 

in which current rules are inapplicable can be completed. Compared to 
current practice (AISI 1996), narrow members (high h/b) with slender 
webs (high h/t) and short lips (low d/b) will be specifically 
discouraged. Members with longer lips (higher d/b) are encouraged. 
The direct strength method integrates known behavior into a rational 
design procedure, removes systematic error, and has a mean test to 
predicted ratio of 1.01. 

CONCLUSIONS 
Behavior and design of thin-walled, cold-formed steel columns requires 
consideration of local, distortional and Euler (i.e., flexural, or flexural-
torsional) buckling. Accurate closed-form methods are provided for 
prediction of local buckling, including interaction, and distortional 
buckling. Current design methods ignore local buckling interaction and 
do not explicitly consider distortional buckling. Ignoring local buckling 
interaction leads to systematic error in strength prediction. Further, 
experimental and numerical studies indicate that post-buckling strength 
in the distortional mode is less than in the local mode. In pin-ended 
lipped channel and zed columns local and Euler interaction is well 
established. Comparisons with experimental data indicate local and 
distortional interaction is not significant, but are inconclusive regarding 
distortional and Euler interaction – for now it is proposed to include 
this interaction in design. A direct strength method (C2 and/or C3) is 
proposed for column design. The method uses separate column curves 
for local buckling (Eq 19) and distortional buckling (Eq 16), with the 
slenderness and maximum capacity in each mode controlled by 
consideration of Euler buckling (Eq 18). The method considers all the 
buckling modes in a consistent manner, does not require effective width 
calculations, and demonstrates that numerical elastic buckling solutions 
(e.g., finite strip) may be used as the key input to determining the 
strength of a large variety of thin-walled compression members. 
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Table 5 Test to Predicted Ratios for all 11 Solution Methods, Broken Down by Controlling Limit State 
design method: A1: AISI (1996) Specification A2: AISI (1996) Specification with Distortional Check

limit state1: L+E - - L+E D -
test to predicted stats2: mean std count mean std count mean std count mean std count mean std count mean std count

Loughlan (1979) 0.97 0.04 13 0.97 0.04 13
Miller and Pekoz (1994) 0.86 0.04 13 0.86 0.04 13
Mulligan (1983) 0.86 0.12 33 0.86 0.12 33
Mulligan (1983) Stub Col. 1.05 0.06 24 1.06 0.06 20 1.10 0.09 4
Thomasson (1978) 0.99 0.23 19 1.00 0.24 18 0.98 1
Polyzois at al. (1993) 0.93 0.10 85 0.92 0.10 60 1.12 0.12 25
All Data 0.94 0.13 187 0.93 0.13 157 1.11 0.11 30

design method: B1: Effective Width Method with L+E and D Check B2: Hand Based Direct Strength Method with L+E & D B3: Numerical Direct Strength Method with L+E & D
limit state1: L+E D - L+E D - L+E - -

test to predicted stats2: mean std count mean std count mean std count mean std count mean std count mean std count mean std count mean std count mean std count
Loughlan (1979) 0.97 0.04 13 1.11 0.07 13 1.08 0.07 13
Miller and Pekoz (1994) 0.86 0.04 13 1.01 0.07 13 0.99 0.06 12 1.09 1
Mulligan (1983) 0.83 0.12 33 0.94 0.12 33 0.92 0.13 33
Mulligan (1983) Stub Col. 1.05 0.06 19 1.10 0.07 5 1.15 0.09 24 1.10 0.09 20 1.28 0.04 4
Thomasson (1978) 1.00 0.24 18 0.98 1 1.01 0.22 19 1.00 0.23 18 1.02 1
Polyzois at al. (1993) 0.87 0.08 47 1.03 0.16 38 0.95 0.12 60 1.09 0.11 25 0.92 0.12 60 1.05 0.10 25
All Data 0.91 0.14 143 1.04 0.15 44 1.00 0.15 162 1.09 0.11 25 0.97 0.14 156 1.08 0.12 31

design method: C1: Effective Width Method with L+E and D+E Check C2: Hand Based Direct Strength with L+E & D+E C3: Numerical Direct Strength Method with L+E & D+E
limit state1: L+E D+E - L+E D+E - L+E D+E -

test to predicted stats2: mean std count mean std count mean std count mean std count mean std count mean std count mean std count mean std count mean std count
Loughlan (1979) 0.97 0.04 12 0.94 1 1.12 0.05 12 0.94 1 1.09 0.05 12 1.00 1
Miller and Pekoz (1994) 0.85 0.04 8 0.93 0.03 5 1.01 0.07 13 0.99 0.06 12 1.38 1
Mulligan (1983) 0.84 0.12 32 0.74 1 0.94 0.12 33 0.92 0.13 33
Mulligan (1983) Stub Col. 1.04 0.06 18 1.10 0.07 6 1.15 0.09 24 1.10 0.10 18 1.26 0.06 6
Thomasson (1978) 1.04 0.25 14 0.97 0.10 5 1.01 0.25 14 1.04 0.09 5 1.07 0.30 9 1.00 0.13 10
Polyzois at al. (1993) 0.87 0.08 47 1.07 0.17 38 0.96 0.12 57 1.12 0.15 28 0.92 0.12 60 1.12 0.10 25
All Data 0.91 0.14 131 1.04 0.16 56 1.00 0.15 153 1.10 0.15 34 0.97 0.15 144 1.11 0.14 43

design method: D1: Effective Width with L+E, D+E, and L+D Checks D2: Hand Based Direct Strength with L+E, D+E, & L+D D3: Numerical Direct Strength with L+E, D+E, and L+D
limit state1: L+E D+E L+D L+E D+E L+D L+E D+E L+D

test to predicted stats2: mean std count mean std count mean std count mean std count mean std count mean std count mean std count mean std count mean std count
Loughlan (1979) 1.25 0.15 13 1.43 0.21 13 1.41 0.20 13
Miller and Pekoz (1994) 1.46 0.12 13 1.77 0.14 13 1.86 0.22 13
Mulligan (1983) 0.94 0.16 7 0.94 0.13 26 1.01 0.16 7 1.07 0.17 26 0.99 0.21 4 1.09 0.19 29
Mulligan (1983) Stub Col 1.47 0.21 24 1.64 0.37 24 1.76 0.50 24
Thomasson (1978) 1.04 0.25 14 1.12 0.24 5 1.03 0.27 12 1.08 0.04 2 1.21 0.27 5 1.07 0.30 9 0.95 0.14 5 1.27 0.28 5
Polyzois at al. (1993) 0.86 0.05 11 1.14 0.22 74 0.88 0.07 11 1.25 0.24 74 1.24 0.29 85
All Data 0.96 0.20 32 1.19 0.26 155 0.97 0.20 30 1.34 0.33 155 1.05 0.27 13 1.35 0.39 169
1 L=Local buckling, D=Distortional buckling, E=Euler (overall) buckling, L+E =Limit State that consider Local buckling interaction with Euler (overall) buckling, etc.
2 test to predicted ratios are broken down by the controlling limit state



 

 


	THIN-WALLED COLUMN DESIGN CONSIDERING LOCAL, DISTORTIONAL AND EULER BUCKLING
	ABSTRACT
	INTRODUCTION
	ELASTIC BUCKLING
	Local Buckling Prediction
	Distortional Buckling Prediction
	Euler Buckling Prediction
	Accuracy of Elastic Buckling Models

	ULTIMATE STRENGTH
	Numerical Studies on Distortional Failures
	Distortional Failures of Rack Columns
	Experiments on lipped channel and zed Columns
	Experiments on Lipped Channels with Web Stiffeners

	COLUMN DESIGN METHODS
	PERFORMANCE OF DESIGN METHODS
	Current Practice (A1)
	Current Practice with a Distortional Check (A2)
	Alternative Effective Width Method (B1)
	Direct Strength Methods (B2 and B3)
	Distortional and Euler Interaction Methods (C1,C2,C3)
	Direct Strength - Distortional & Euler Interaction (C3)
	Local and Distortional Interaction Methods (D1,D2,D3)

	DISCUSSION
	Reliability
	Restriction of the Distortional Mode
	Recommendations for Column Design

	CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES


