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Abstract

A nonlinear finite element (FE) model is developed to simulate two series of flexural tests, previously conducted by the authors, on industry
standard cold-formed steel C- and Z-section beams. The previous tests focused on laterally braced beams with compression flange details that lead
predominately to local buckling failures, in the first test series, and distortional buckling failures, in the second test series. The objectives of this
paper are to (i) validate the FE model developed for simulation of the testing, (ii) perform parametric studies outside the bounds of the original
tests with a particular focus on variation in yield stress and influence of moment gradient on failures, and (iii) apply the study results to examine
and extend the Direct Strength Method of design. The developed FE model shows good agreement with the test data in terms of ultimate bending
strength. Extension of the tested sections to cover yield stresses from 228 to 506 MPa indicates that the Direct Strength Method is applicable
over this full range of yield stresses. The FE model is also applied to analyze the effect of moment gradient on distortional buckling. It is found
that the distortional buckling strength of beams is increased due to the presence of moment gradient. Further, it is proposed and verified that the
moment gradient effect on distortional buckling failures can be conservatively accounted for in the Direct Strength Method by using an elastic
buckling moment that accounts for the moment gradient. An empirical equation, appropriate for use in design, to predict the increase in the elastic
distortional buckling moment due to moment gradient, is developed.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Laterally braced cold-formed steel beams generally suffer
from one of two potential instabilities: local or distortional
buckling. An extensive series of tests was conducted on
industry standard cold-formed steel C and Z-beams to study
local buckling (Yu and Schafer [1]) and distortional buckling
(Yu and Schafer [2]) failures. Each test consisted of a pair of
5.5 m long C or Z-sections which were oriented in an opposed
fashion and loaded at the 1/3 points along the length.

In the “local buckling tests” a through-fastened panel was
attached to the compression flange, as shown in Fig. 1. The
panel stabilized the compression flange, and specific fastener
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Fig. 1. Local buckling test.

details were developed to avoid distortional buckling, but allow
local buckling. In the “distortional buckling tests” nominally
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Fig. 2. Distortional buckling test.

identical specimens were tested, but the corrugated panel
attached to the compression flange was removed in the constant
moment region, so that distortional buckling could occur, as
shown in Fig. 2.

The detailed nonlinear finite element model based on these
two series of tests is fully summarized in Yu [3]. The validation
work is briefly reviewed here, followed by two applications:
(1) extension of the experimentally studied sections to examine
the importance of yield stress variation on the solution; and (2)
examination of the influence of moment gradient on distortional
buckling of cold-formed steel beams.

2. Finite element modeling

2.1. Modeling details and loading/boundary conditions

An overall view of the developed FE model is provided in
Fig. 3(a). The cold-formed steel beams, panel, and hot-rolled

tubes, which stiffen the section at the load and support points,
are modeled using 4-node, quadrilateral, shell elements (S4R
in ABAQUS [4]). The ends of the beams are simply supported
at the bottom flanges under the two circular tubes. Connection
details and constraints on the sections, the hot-rolled steel tubes,
the load beam, and the steel panel are illustrated in Fig. 3(b) and
(c). “Link” constraints in ABAQUS are used to tie the tension
flanges of the beams together at the location of the attached
angles.

2.2. Geometric imperfections

Geometric imperfections of the tested beams were not
measured. Therefore, the imperfections employed in the FE
models were based on the statistical results by Schafer
and Peköz [5]. We conservatively assumed that the Type 1
imperfection may be applied to the local buckling mode and
the Type 2 imperfection applied to the distortional buckling
mode, where Type 1 (d1) imperfections are based on measured
deviations from flat in the center of stiffened elements, and Type
2 (d2) imperfections are based on measured deviations from flat
at the edge of unstiffened elements or the flange/lip juncture
of edge stiffened elements (see Schafer and Peköz [5]). For
each test FE simulations were performed using imperfection
magnitudes from the 25% and 75% values of the cumulative
distribution function (CDF) of measured Type 1 and Type
2 imperfections. The first simulation used a larger initial
geometric imperfection with a 75% CDF magnitude, or d1/t =

0.66 for local buckling; d2/t = 1.55 for distortional buckling.
The second simulation used a smaller imperfection with a 25%
CDF magnitude, or d1/t = 0.14 for local buckling; d2/t =

0.64 for distortional buckling. Thus, the two simulations cover
the middle 50% of anticipated imperfection magnitudes. The
final imperfection shape is a scaled superposition of the local
and distortional buckling mode.

(a) Overall FE model. (b) Details at load point.

(c) Details at panel to section.

Fig. 3. Finite element modeling of beams in flexural tests.
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(a) 11.5Z092-1E2W local buckling test. (b) Simulation of local buckling test.

(c) 11.5Z092-3E4W distortional buckling test. (d) Simulation of distortional buckling test.

Fig. 4. General comparison of test and FE models.

2.3. Material modeling

Material nonlinearity in the cold-formed steel beams was
modeled with von Mises yield criteria and isotropic hardening.
Measured stress–strain relations taken from tensile coupons
from the beams were employed. All other components were
modeled as elastic, with E = 203.4 GPa and ν = 0.3,
except for the hot-rolled steel tubes and the loading beam which
used an artificially elevated modulus (10E) so that they would
effectively act as rigid bodies. Residual stresses were ignored.
See Yu [3] for further discussion.

2.4. Nonlinear analysis method

The analysis of the ultimate strength of cold-formed steel
members involves obtaining the nonlinear static equilibrium
solution of an unstable problem. For such a problem, the
generalized load–displacement response can exhibit non-
monotonic response as the solution evolves. Simple incremental
load or displacement algorithms fail to reproduce non-
monotonic equilibrium paths and thus more robust methods
are required. Among them, the modified Riks method
(Crisfield [6]) has been proven both efficient and accurate, and
is implemented in modern FE analysis codes such as ABAQUS.
The Riks method is a variation of arc-length methods and may
conceptually be understood as an incremental work solution.
The Riks method has been employed with good success in past
research on cold-formed steel members for finding the peak
load (e.g., Schafer and Peköz [5]); however post-peak response
may fail to converge, and the method is sensitive to step size
and automatic incrementation algorithms (see Schafer [7]). In
this research the method is augmented using artificial damping.

The addition of artificial damping is a technique for
avoiding localized instabilities even in nonlinear static solutions
(i.e., without performing a full dynamic analysis). Artificial

damping is implemented in ABAQUS by adding mass-
proportional damping of the form cM∗v to the global
equilibrium equation: P − I − cM∗v = 0, where P is
external forces, I is internal (nodal) forces, M∗ is an artificial
mass matrix calculated with unity density, c is the damping
coefficient, v = 1u/1t and 1u is the increment of nodal
displacements and 1t is the increment of time. The damping
coefficient c is chosen such that, based on extrapolation of the
results obtained during the first increment, the dissipated energy
during the step is a small fraction of the change in strain energy
during the step (2 × 10−4 by default). Unlike the definition
of time in dynamics problems, the time in a nonlinear static
analysis refers to increments of the total arc-length. Ideally, the
damping is applied in such a way that the viscous forces are
sufficiently large to prevent instantaneous buckling or collapse,
but small enough not to affect the behavior significantly. This
approach was employed to good success in this research.

2.5. Comparison with experimental results

As demonstrated in Fig. 4, the developed FE model provides
a good prediction of the deformed shapes. The local buckling
test is characterized by short and repeated buckling waves. The
distortional buckling test failed with the compression flange
rotating, and with a longer buckling wavelength than in the local
mode.

Select load-to-deflection response of FE simulations are
shown with comparison to the test results in Figs. 5 and 6. One
measure of imperfection sensitivity is the difference in response
between the 25% and 75% CDF values, as shown in the figures.
Sensitivity to the peak strength is depicted by the vertical
difference between the two curves at peak load, sensitivity to
the final failure mechanism is also shown. For example, Fig. 5
shows a case where the peak load is sensitive to imperfection,
but the failure mechanism, i.e. the response in the post-peak
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Fig. 5. Comparison of FEM results with test 8C043-5E6W.

Fig. 6. Comparison of FEM results with test 8.5Z073-4E3W.

range appears nearly identical. Fig. 6 presents a case where
post-peak mechanism response is clearly quite different for the
two models. Many, but not all, cases exist where the post-peak
slope predicted by the models is in qualitative agreement with
the tests.

The results of the finite element analyses are summarized in
Table 1 and Fig. 7. The mean response of the FE simulations
has good agreement with the tested strength. The pair of
simulations also provides a measure of imperfection sensitivity:

the middle 50% of expected imperfection magnitudes result in
a range of bending capacity equal to 13% for local buckling and
15% for distortional buckling.

Some limitations exist with the developed FE model. For
example, a trend with respect to slenderness is observable
(Fig. 7). This is likely due to our imperfection choice,
which is a function of thickness (and thus is generally larger
for the thicker, less slender, members). Further, the post-
collapse mechanism is not always well approximated. Lack of
agreement in the large deflection post-collapse range could be
a function of the solution scheme (i.e., use of artificial damping
instead of Riks) or more basic modeling assumptions, such
as ignoring plasticity in the panels and the contact between
components of the beam. Further discussion of the issues raised
above and complete details of the modeling results may be
found in Yu [3]. In total, it is concluded that the ultimate
strength for both local buckling and distortional buckling of
cold-formed steel beams is well simulated by this finite element
model, and thus the model is considered to be validated and is
used for further study in this paper.

3. Application I: Extended finite element analysis and
application of the direct strength method

Given the successful verification of the developed finite
element model, extension to a greater variety of cold-
formed steel sections and material properties (not examined
experimentally) is possible. Of particular interest is a further
examination of yield stress on the behavior. This was primarily
driven by the fact that experimentally measured yield stress
for the tested Z-sections showed little variation, but for the
C-sections covered an extensive range. A subset of the tested
sections, covering yield stresses from 228 to 506 MPa, and
with stress–strain curves based on experimentally measured
coupons, was employed in this parametric study. The FE results
from these models are then compared with the Direct Strength
Method (NAS [8], Schafer and Peköz [9]).

Models of both the local buckling test and distortional
buckling test (no panel attached to the compression flange
in the pure bending region) were completed. A subset of
the tested geometries was selected, as given in Table 2. The
notations in Table 2 refer to Fig. 8. The primary focus for
experimental examination was on Z-sections since they are
more prone to distortional buckling and little variation in
yield stress. The method of generating geometric imperfections
described in the previous section was again employed. A single
maximum imperfection magnitude corresponding to the 50%

Table 1
Summary of finite element analysis results for local buckling tests

Test label P25%σ /Ptest P75%σ /Ptest Pmean/Ptest

Local buckling tests
Mean 1.06 0.93 1.00
Standard deviation 0.06 0.07 0.06

Distortional buckling tests
Mean 1.08 0.93 1.01
Standard deviation 0.07 0.07 0.06

Note: Ptest: Peak tested actuator load; Pmean: approximated by average value of P25%σ : and P75%σ ; P25%σ : Peak load of simulation with 25% CDF of maximum
imperfection; P75%σ : Peak load of simulation with 75% CDF of maximum imperfection.
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Fig. 7. Accuracy and sensitivity of FE predictions for tested beams.

Table 2
Geometry and yield stressa of analyzed sections

Specimen h (mm) bc (mm) dc (mm) θc (deg) bt (mm) dt (mm) θt (deg) rhc (mm) rdc (mm) rht (mm) rdt (mm) t (mm)

8Z2.25 × 050 194.4 55.9 21.9 50.0 55.9 21.9 50.0 5.8 5.8 5.8 5.8 1.215
8Z2.25 × 100 194.4 55.9 21.9 50.0 55.9 21.9 50.0 5.8 5.8 5.8 5.8 1.215
8.5Z2.5 × 70 206.6 60.8 21.9 50.0 60.8 21.9 50.0 6.1 6.1 6.1 6.1 1.701
8.5Z092 204.1 63.2 21.9 51.8 58.3 24.3 50.4 6.8 6.8 7.5 7.5 2.187
8.5Z120 206.6 63.2 24.3 47.8 60.8 24.3 48.9 8.8 8.8 8.3 8.3 2.858
8.5Z082 205.6 60.8 23.1 49.0 57.4 23.6 50.3 6.8 6.8 7.3 7.3 1.959
11.5Z3.5 × 80 279.5 85.1 21.9 50.0 85.1 21.9 50.0 7.3 7.3 7.3 7.3 1.944
8C068 192.0 46.2 17.0 80.0 48.6 14.6 77.8 3.9 3.9 3.9 3.9 1.701
8C097 195.4 50.8 14.1 85.1 50.3 12.9 86.3 6.8 6.8 7.1 6.8 2.381
12C068 291.6 48.6 14.6 85.0 48.6 14.6 85.0 6.3 6.6 6.3 6.3 1.652

a Yield stress, fy = 228, 303, 387, 429, 506 MPa.

Fig. 8. Definitions of specimen dimensions for Z and C sections.

CDF magnitude: d1/t = 0.34 for local buckling mode; d2/t =

0.94 for distortional buckling mode, was selected.

3.1. The performance of the direct strength method

Fig. 9(a) shows a comparison of the local buckling strength
of cold-formed steel beams calculated by the Direct Strength
Method (DSM) with data from both the tests and the extended
FE simulations. A similar comparison for distortional buckling
is provided in Fig. 9(b). Table 3 summarizes the comparison
of DSM predictions with both the tested and extended FE
model bending capacities. In general, DSM provides reliable

Table 3
Summary of DSM predictions vs. test and FEM results

Local buckling Distortional buckling
Mn/MDSM Number Mn/MDSM Number

Tests
µ 1.03 23 1.01 18
σ 0.06 23 0.07 18

FEM
µ 1.02 50 1.04 50
σ 0.07 50 0.07 50

Overall
µ 1.03 73 1.03 68
σ 0.07 73 0.07 68

Note: µ — average; σ — standard deviation; Mn — bending capacity of beams
(test or ABAQUS); MDSM — predictions of direct strength method; Number
— the number of analyzed sections.

and conservative predictions for the bending strength of cold-
formed steel beams. The local buckling strength predictions
are more scattered than those of distortional buckling, and
significant inelastic reserve is ignored.

4. Application II: Moment gradient effect on distortional
buckling

The second application for the developed FE model is related
to the influence of moment gradients on the member strength.
In practical situations beams are subjected to a variety of
moment gradients. In design, moment gradient is considered
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(a) Local buckling strength. (b) Distortional buckling strength.

Fig. 9. Comparison of DSM to tests and extended FE results.

Fig. 10. A continuous beam under uniform distributed loads.

in the calculation of lateral-torsional buckling (i.e., Cb) but
ignored in local and distortional buckling. In the local mode
the buckling half-wavelength is short and the moment gradient
has only a minor influence (particularly for stiffened elements,
see Yu and Schafer [10,11]). However, in the distortional
mode the buckling half-wavelength is long enough that typical
moment gradients can have influence. This issue is of some
practical significance, because one common case for concern
in distortional buckling is the negative bending region of a
continuous beam: Fig. 10. Significant moment gradients exist
in this region, and in practice little restraint may be placed on
the compression/bottom flanges.

In this section, the moment gradient effect on both elastic
buckling and ultimate strength of cold-formed steel beams
failing in distortional buckling is analyzed by FE simulation.

4.1. Elastic distortional buckling under moment gradient

First, the moment gradient effect on the elastic distortional
buckling moment (Md) of cold-formed steel beams is explored.
For example, see the work of Bebiano et al. [12]. Here, an FE
model (in ABAQUS) is utilized to determine Md under a linear
moment gradient, r (where r = M1/M2, M1 and M2 are the end
moments, |M2| > |M1|). The developed FE model is shown in
Fig. 11(a), along with the resulting elastic distortional buckling
modes under varying moment gradients: Fig. 11(b)–(d).

Twelve typical cold-formed steel C and Z-sections are
chosen for detailed elastic distortional buckling FE analysis, see

Table 4. For the selected sections the influence of linear moment
gradient (r) on the elastic distortional bucking moment (Md) of
a beam of fixed length (L = 3Lcrd) is shown in Fig. 12; where,
Lcrd is the half-wavelength and Mcrd is the elastic buckling
moment for distortional buckling under constant moment (r =

1). The elastic distortional buckling moment is increased when
a moment gradient is applied. For example, when r = −1
(double curvature) a 30%–50% increase is observed.

Fig. 12 shows that moment gradient has an influence on
elastic distortional buckling, but if the same moment gradient
occurs over a longer length of the beam this influence will
dissipate. For a triangular bending moment diagram (r = 0)

this dissipation is illustrated in Fig. 13. Theoretically, as L →

∞, the buckling moment will converge to the case with no
moment gradient (i.e., Mcrd), but the FE analysis indicates
convergence to these limiting values is slow. For beams with
a length of 10Lcrd, a minimum 10% increase in Md above Mcrd
is still observed. A lower bound of the moment gradient effect
for r = 0 is:

Md/Mcrd = 1.0 ≤ 1.0 + 0.4
(

Lcrd

L

)0.7

≤ 1.3. (1)

The moment gradient factor r , and section length ratio
Lcrd/L , are two essential parameters for representing the
moment gradient influence. An “equivalent moment concept”
is proposed here as an approximate method to simplify the
possible loading configurations (different r and Lcrd/L) to a
single case, as shown in Fig. 14(a) and (b). The equivalent
moment concept presumes that the elastic distortional buckling
moment of a beam with length L and moment gradient r =

M1/M2 is equal to the elastic distortional buckling moment of
the same section with length Le under moment gradient r = 0.

A series of finite element analyses were performed to
examine the equivalent moment concept. Three cases were
studied: (1) L = 3Lcrd, r = 0; (2) L = 1.5Lcrd, r =

0.5; (3) L = 4.5Lcrd, r = −0.5. The equivalent moment
concept presumes that these three cases have the same elastic
distortional buckling moment (i.e., Md based on Le = 3Lcrd,
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(a) FE model for moment gradient, L + 3Lcrd. (b) Constant moment (r = 1).

(c) Linear moment gradient (r = 0). (d) Double curvature (r = −1).

Fig. 11. FE model and distortional buckling of Z-section subjected to moment gradient.

Table 4
Geometry of selected sections for study

Type Label h
(mm)

bc
(mm)

dc
(mm)

θc
(deg)

bt
(mm)

dt
(mm)

θt
(deg)

rhc
(mm)

rdc
(mm)

rht
(mm)

rdt
(mm)

t (mm)

Z

8Z50 203.2 57.2 23.6 50.0 57.2 23.6 50.0 6.1 6.1 6.1 6.1 1.270
8Z100 203.2 57.2 23.6 50.0 57.2 23.6 50.0 6.1 6.1 6.1 6.1 2.540
11.5Z100 292.1 88.9 22.9 50.0 88.9 22.9 50.0 7.6 7.6 7.6 7.6 2.540
8.5Z070 215.9 63.5 22.9 50.0 63.5 22.9 50.0 6.4 6.4 6.4 6.4 1.778
8.5Z082 214.9 63.5 24.1 49.0 59.9 24.6 50.3 7.1 7.1 7.6 7.6 2.047
8.5Z120 215.1 65.8 24.4 47.8 62.5 25.4 48.9 9.1 9.1 8.6 8.6 2.987
8.5Z092 214.1 66.3 23.4 51.8 61.0 24.1 50.4 7.1 7.1 7.9 7.9 2.286
11.5Z080 292.1 88.9 22.9 50.0 88.9 22.9 50.0 7.6 7.6 7.6 7.6 2.032

C

8C097 204.2 53.1 14.7 85.1 52.6 13.5 86.3 7.1 7.1 7.4 7.1 2.489
8C054 203.2 52.1 15.0 89.4 51.8 14.2 83.3 5.6 5.8 5.8 6.1 1.321
10C068 256.5 52.6 13.5 80.7 52.8 13.2 81.9 6.1 5.8 5.8 5.6 1.610
3.62C054 94.7 47.8 10.4 87.0 47.5 10.9 89.0 6.6 6.1 6.9 6.9 1.410

r = 0). The FE results are summarized in Table 5, and it
is shown that the distortional buckling moment of these three
cases, for each section, are indeed quite close; the error is
below 3% on average. The equivalent moment concept is a
simplification with validity, at least for the studied sections.

Using the equivalent moment concept, all moment gradient
effects can be projected to the same case in which a moment
gradient r = 0 is applied to the beam with the equivalent length
Le, and Eq. (1) can be generalized to:

Md/Mcrd = 1.0 ≤ 1 + 0.4(Lcrd/L)0.7

× (1 − M1/M2)
0.7

≤ 1.3 (2)

where M2 and M1 are the end moments on a segment of beam
of length L;

|M2| > |M1|, single curvature is positive;
Lcrd is the half wavelength of distortional buckling under
constant moment (M1 = M2);
Mcrd is the distortional buckling moment under constant
moment (M1 = M2);
Md is the distortional buckling moment under a moment
gradient r = M1/M2 (M1 6= M2).

4.2. Ultimate distortional buckling strength under moment
gradient

In this section, the previously validated nonlinear FE model
is extended to investigate ultimate strength in distortional
buckling under a moment gradient. Two nonlinear FE models
were used in the investigation. The first model, Fig. 15, modifies



Aut
ho

r's
   

pe
rs

on
al

   
co

py

588 C. Yu, B.W. Schafer / Journal of Constructional Steel Research 63 (2007) 581–590

Table 5
Finite element results for verifying equivalent moment concept

Section label Mcrd−1 (kip-in.) (r = 0, L = 3Lcrd) Mcrd−2/Mcrd−1 (r = 0.5, L = 1.5Lcrd) Mcrd−3/Mcrd−1 (r = −0.5, L = 4.5Lcrd)

8Z50 73.33 1.02 0.99
8Z100 323.13 1.03 0.99
11.5Z100 342.36 1.03 1.00
8.5Z070 150.34 1.04 1.00
8.5Z082 205.23 1.03 0.99
8.5Z120 451.59 1.03 1.00
8.5Z092 257.51 1.03 0.99
11.5Z080 213.73 1.02 1.00
8C097 317.85 1.04 0.94
8C054 80.78 1.03 0.99
10C068 115.94 0.97 0.95
3.62C054 45.74 1.03 1.00

Average 1.03 0.99

Fig. 12. Moment gradient (r = M1/M2) influence on elastic distortional
buckling.

Fig. 13. Section length ratio influence on elastic distortional buckling.

the original test setup to a single load P applied at the first
1/3 point, thus the unrestrained part of the beam is subjected
to a moment gradient r = 0.5. The second model, Fig. 16,

(a) Single curvature.

(b) Double curvature.

Fig. 14. Equivalent moment concept for elastic distortional buckling
prediction.

replaces the constant moment region with a single midspan
applied load and braces the compression flange with corrugated
panel on one side only, thus the beam is subjected to a moment
gradient r = 0. A local and distortional buckling combined
mode shape is selected for the initial geometric imperfection,
and the magnitude corresponds to the 50% CDF. Yield stresses
of 228, 303, 387, 429, and 506 MPa based on tensile coupons
taken from earlier tested specimens are employed.

Fig. 15 shows the deformed shape of beam 11.5Z080
subjected to a moment gradient, r = 0.5, analyzed by the first
finite element model, the material yield stress is 429 MPa. A
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Fig. 15. Deformed shape of 11.5Z080 beam subjected to moment gradient
r = 0.5.

Fig. 16. Deformed shape of 8.5Z070 beam subjected to moment gradient
r = 0.

distortional buckling wave is observed close to the load point
where maximum bending moment exists. The finite element
analysis shows the bending capacity of this beam is increased
15% when the moment gradient r = 0.5 is applied.

Fig. 16 illustrates the deformed shape of beam 8.5Z070
subjected to a moment gradient r = 0, analyzed by the second

finite element model. The distortional buckling half-wave forms
next to the load point and the finite element analysis indicates
that the strength of the beam is increased 22.5% compared with
the same beam under constant moment.

The geometry of the C- and Z-sections analyzed by the
two FE models is given in Table 6. The numerical results are
summarized in Table 7, where it is shown that when compared
to simulations of the distortional buckling tests under constant
moment, the bending strength in the distortional buckling mode
increases by an average of 15% (see MFEd-MG/MFEd) due to the
presence of the moment gradient.

It is proposed that the influence of the moment gradient
on the strength may be approximated in the Direct Strength
Method by allowing the elastic buckling moment Mcrd in the
Direct Strength Method equations to include the influence of
moment gradient; i.e., let Md of the previous section be used
in place of Mcrd. The consequence of this choice is shown in
Fig. 17, where Md of Eq. (2) has been used in place of Mcrd
— the result is a conservative approximation to the strength
increase observed due to the moment gradient. If the exact
Md is used instead of Eq. (2), the resulting strength prediction
(M ∗DSd-MG of Table 7) is slightly improved. Comparison of
the accuracy of the Direct Strength equations for distortional
buckling failures without moment gradient, Fig. 9(b), to that
of Fig. 17 indicates that while the proposed approach is
simple, it remains a bit on the conservative side. Indicating
that post-buckling and collapse under the moment gradient may
be slightly different than in constant moment, an issue that
deserves further study.

Table 6
Geometry of analyzed C and Z-sections

Specimen h (mm) bc (mm) dc (mm) θc (deg) bt (mm) dt (mm) θt (deg) rhc (mm) rdc (mm) rht (mm) rdt (mm) t (mm)

8.5Z082 214.9 63.5 24.1 49.0 59.9 24.6 50.3 7.1 7.1 7.6 7.6 2.047
8.5Z120 215.1 65.8 24.4 47.8 62.5 25.4 48.9 9.1 9.1 8.6 8.6 2.987
11.5Z080 292.1 88.9 22.9 50.0 88.9 22.9 50.0 7.6 7.6 7.6 7.6 2.032
8C097 204.2 53.1 14.7 85.1 52.6 13.5 86.3 7.1 7.1 7.4 7.1 2.489
8.5Z070 215.9 63.5 22.9 50.0 63.5 22.9 50.0 6.4 6.4 6.4 6.4 1.778
8Z100 203.2 57.2 23.6 50.0 57.2 23.6 50.0 6.1 6.1 6.1 6.1 2.540
11.5Z100 292.1 88.9 22.9 50.0 88.9 22.9 50.0 7.6 7.6 7.6 7.6 2.540
8Z050 203.2 57.2 23.6 50.0 57.2 23.6 50.0 6.1 6.1 6.1 6.1 1.270

Table 7
Comparisons of DSM predictions with FE results

MFEd-MG/MFEd M ∗DSd-MG /MDSd MFEd-MG/MDSd-MG MFEd-MG/M ∗DSd-MG

FE model with r = 0.5
µ 1.13 1.06 1.15 1.14
σ 0.02 0.03 0.05 0.05

FE model with r = 0
µ 1.25 1.07 1.22 1.20
σ 0.04 0.02 0.04 0.04

Overall µ 1.15 1.06 1.16 1.15
σ 0.05 0.03 0.06 0.05

Note: µ — average; σ — standard deviation; MFEd-MG — FE prediction of ultimate moment in distortional buckling with moment gradient; MFEd — FE prediction
of ultimate moment in distortional buckling no moment gradient; M ∗DSd-MG — Direct strength prediction of nominal moment in distortional buckling, with Mcrd
determined by FE elastic buckling including moment gradient influence; MDSd-MG — Direct strength prediction of nominal moment in distortional buckling, with
Mcrd determined from Eq. (2) and includes moment gradient influence; MDSd — Direct Strength prediction of nominal moment in dist. buckling no moment
gradient.
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Fig. 17. Comparison of the direct strength method distortional buckling prediction with finite element modeling (Mcrd-MG = Md of Eq. (2)).

5. Conclusions

A nonlinear FE model was developed (in ABAQUS) and
verified against previously conducted flexural tests on cold-
formed steel C- and Z-section beams. The FE analysis was
extended to beams not included in the tests; in particular,
yield stress was varied from 228 to 506 MPa. The results
indicate that the Direct Strength Method yields reasonable
strength predictions for both local and distortional bucking
failures of Z and C-section beams with a wide range of industry
standard geometries and yield stresses of steel. The FE model
was also utilized to study the distortional buckling and post-
buckling behavior of cold-formed steel beams under moment
gradient. Moment gradients were achieved by applying a single
concentrated load in the middle of simply supported beams.
The FE results show that overly conservative predictions
will be made if the moment gradient effect is ignored in
distortional buckling. It is also shown that by using the
appropriate elastic buckling moments, the Direct Strength
Method is a conservative predictor of the increased strength
due to moment gradient in distortional buckling. The elastic
distortional buckling moment under a moment gradient can
be determined by finite element analysis, or by the empirical
equation proposed in the paper, Eq. (2).
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