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Effective Widths of Unstiffened Elements
with Stress Gradient

M. R. Bambach1 and K. J. R. Rasmussen2

Abstract: Current American design provisions treat unstiffened elements under stress gradients as if they were uniformly comp
effective width calculations. Australian, British, and European design provisions allow accurate calculation of the elastic
coefficient, however, the same effective width equation for compressed elements is used for elements with stress gradients.
the design provisions produce conservative bending capacities for sections containing unstiffened elements under stress gra
paper presents a design method for calculating the effective width of these elements, based on plate test results of unstiffen
under strain gradients varying from pure compression to pure bending. It is shown that both elastic and plastic effective widt
derived from the test results, and effective width methods based on both principles may be used for design.
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Introduction

Open thin-walled sections usually consist of stiffened and un
ened component plates. If these elements are sufficiently sle
the section will locally buckle at a load less than the ultimate
carrying capacity. The section will continue to resist load a
local buckling due to the redistribution of longitudinal stress f
the most flexible regions. This redistribution may be simpli
for design purposes by assuming that certain regions of the
section remain effective up to the yield point of the mate
while the remainder is ineffective in resisting load. The effec
width method is a universal tool, as it may be applied to
section geometry. Current specifications for the design of
thin-walled section provide equations for determining the e
tive width of stiffened and unstiffened elements, and the ultim
capacity of the section is calculated from the effective sec
properties. However, for cross sections in bending with un
ened elements under stress gradients, current design prov
have been shown to by unduly conservative(Chick and Rasmus
sen 1999).

Extensive experimental and analytical studies on stiffene
ements(supported along both longitudinal edges) have been ca
ried out and have led to well-established equations for the
mation of the effective width of such elements in unifo
compression and under stress gradients. In comparison, e
mental investigations on unstiffened elements(supported alon

1Research Fellow, Dept. of Civil Engineering, Sydney Univ., Syd
NSW 2006, Australia.

2Professor, Dept. of Civil Engineering, Sydney Univ., Sydney, N
2006, Australia.

Note. Associate Editor: Mark D. Bowman. Discussion open u
March 1, 2005. Separate discussions must be submitted for indiv
papers. To extend the closing date by one month, a written reques
be filed with the ASCE Managing Editor. The manuscript for this p
was submitted for review and possible publication on October 18, 2
approved on June 5, 2003. This paper is part of theJournal of Structural
Engineering, Vol. 130, No. 10, October 1, 2004. ©ASCE, ISSN 07

9445/2004/10-1611–1619/$18.00.

JOURNAL

Downloaded 29 Sep 2011 to 128.220.58.64. Redistribution subject to
,

s

both longitudinal edge) are quite limited. In the 1970s the app
cability of the effective width concept to unstiffened eleme
under uniform compression was studied in detail by Kalyan
man et al.(1977), who tested a large number of beams and s
columns that contained web elements that were fully effec
Tests of a similar nature previously reported by Winter(1947,
1970) and the experimental and analytical research by Kalya
man et al. led to the adoption of the effective width approac
uniformly compressed unstiffened elements in the 1986 editi
the AISI Specification.

Beam tests on sections that contain fully effective webs
simple edge stiffeners subjected to stress gradients have be
ported by Winter(1947); Desmond et al.(1981); and Rogers an
Schuster(1996), and on open channels with inclined flan
under stress gradients by Rhodes(2000). Single plate test data f
unstiffened elements with stress gradients have only bee
ported by Rhodes et al.(1975), where results of four tests
individual plates simply supported on three sides are give
varying values of load eccentricity. Due to the lack of test d
the AISI (1996) treats unstiffened elements with stress grad
as if they were uniformly compressed for effective width ca
lations. The Australian, British, and European codes allow a
rate calculation of the elastic buckling coefficient, however,
same effective width equation for compressed elements is
for elements with stress gradients. In all cases, the design
sions produce bending capacities up to 50% conservative fo
tions containing elements stress gradients(Chick and Rasmusse
1999).

In a companion paper(Bambach and Rasmussen 2004b), the
results of 80 plate tests of unstiffened plate elements, under
gradients varying from pure compression to pure bending are
sented. This paper presents strength curves derived from the
tests, the effective width is assumed to be under both elastic(lin-
ear) and plastic(constant yield) stress distributions. Design equ
tions are presented for calculating both elastic and plastic e

tive widths.
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Plastic Strains in Sections

In order that a coherent design solution may be obtained from
test results, one must first examine the strain condition that e
in structural sections at ultimate. For sections where the un
ened element is in pure compression, such as compression
bers and 1-sections and channel sections in major axis ben
there is no difference to the design philosophy if the ultim
strain is at the yield strain or at two times the yield strain,
example, as far as the flange is concerned, since as the unst
element is assumed to be at the yield stress in both situatio
effective width at the yield stress is applicable. When we con
an I-section in minor axis bending, however, if the maxim
strain in the section at ultimate is the yield strain, an effec
width with a stress gradient varying from the yield stress to
stress would be appropriate(hereafter termed an elastic effect
width). If the strain gradient, or curvature, was infinitely la
(fully plastic section), an effective width with a stress gradient
constant yield stress would be appropriate(hereafter termed
plastic effective width). For most practical sections one wo
expect a strain condition at ultimate somewhere between
two conditions.

Experimental studies by Chick and Rasmussen(1999) and
Rusch and Lindner(2001) on I-sections in minor axis bendin
and Rhodes(2000); Beale et al.(2001); and Yiu and Pekoz(2001)
on plain channel sections in minor axis bending, have shown
these sections often exhibit postelastic behavior. For examp
I-section in minor axis bending with flange slenderness 1.0[Eq.
(1)] tested by Chick(1997) reached a curvature of 2.1 times
yield curvature at ultimate, and a similar section with flange s
derness of 1.44 tested by Rusch and Lindner(2001) reached
curvature of approximately 3 times the yield curvature. Exp
ments on plain channels and channels with inclined flang
minor axis bending(producing compression at the flange tip) by
Rhodes(2000) showed full plastic capacity forb/ t ratios less tha
15, and postelastic capacity up to approximately 30. A sim
result was found by Beale et al.(2001) from tests on plain chan
nels in minor axis bending. Yiu and Pekoz(2001) proposed tha
plain channels in minor axis bending(producing compression
the flange tip) exhibit postelastic capacity for flange slendern
ratios less than 0.859.

Fig. 1. Deriving elastic effective widths from plate tests of

Fig. 2. Deriving plastic effective widths from plate tests of
1612 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2
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Comparison of Elastic and Plastic Effective Widths

The use of elastic effective widths adjacent to the supported
or plastic effective widths at a eccentricity to the supported e
is central to the design philosophy and to the ensuing d
equations for unstiffened elements under strain gradients. F
load case of compressive strain at the free edge and zero st
the supported edge, the elastic effective width is calculate
equating the ultimate axial force on the element in the test
stress block that varies linearly from yield at the unsuppo
edge of the effective width to zero at the supported edge o
element (Fig. 1). The plastic effective width is calculated
equating the same ultimate axial force on the element in th
to a stress block of constant yield stress on the effective w
(Fig. 2). For this load case, elastic effective widths will be of
order of two times the magnitude of those assuming plastic e
tive widths.

Calculations have shown that for the strain gradients te
both elastic and plastic effective widths satisfy the ultimate a
force on the element in the test(with the exception of the loa
case of compressive strain at the supported edge and zero s
the free edge, where the ultimate axial force is slightly unde
timated by the elastic effective width equations for less sle
elements). The plastic effective width is positioned at an ecc
tricity to the supported edge, such that the moment of the
block (about the supported edge) is equal to the moment at ul
mate in the tests(about the supported edge). The elastic effectiv
width, congruent with current design standards is positione
jacent to the supported edge, and the linear stress block
fixed eccentricity of two-thirds of the elastic effective width. T
plastic effective width method is thus a two degree of free

ressive strain at the unsupported edge, zero at the supported

ressive strain at the unsupported edge, zero at the supported
comp
comp
004
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solution(effective width and eccentricity) capable of representin
both axial force and moment at ultimate, while the elastic me
is a one degree of freedom solution(effective width). Calculations
have shown that the elastic effective width method underestim
the ultimate moment in the tests.

It is shown in a companion paper(Bambach and Rasmuss
2004a), that good agreement with tests on structural section
cluding I-sections and channel sections in minor axis ben
can be achieved by using inelastic stress distributions. For un
ened elements in bending, these stress distributions involve
stant(plastic) stress blocks at yield on the effective widths. T
proposed inelastic design calculation is consistent with the d
procedure for cross sections containing stiffened compressio
ements described in Secs. 3.3.2.3 and c3.1.1(b) of-AS/NZS 4600
(1996) and the AISI Specification(2001), respectively. It is als
consistent with the experimental observation discussed in the
vious section that cross sections containing unstiffened elem
under strain gradients often have ultimate compressive strain
ceeding the yield strain in their ultimate limit state. Plastic ef
tive widths, therefore, satisfy exactly the ultimate force and
ment values from the plate tests and are congruent with
proposed inelastic design model for structural sections.

As previously stated, elastic effective widths are congr
with element design in current standards, however, the mo
capacity in the plate tests in underestimated. It is shown in
companion paper(Bambach and Rasmussen 2004a) that while
elastic effective widths underestimate the moment capacity o
plate tests, good agreement with tests on structural sections
achieved with the inelastic model. Since both elastic and pl
effective width methods are applicable, elastic and plastic e
tive widths are derived from the plate tests and are present
this paper.

Plastic Effective Width and Eccentricity Results

The plastic effective widths and eccentricities are calculated
the stress values of the applied compressive axial forcesNd and
bending momentsMd at the ultimate condition in the tests. T
values of equivalent uniform stresssfCultd and bending stres
sfMultd derived from the ultimate force and moment are prese
in Bambach and Rasmussen(2004b), as are the values of strain
the ultimate condition. The applied force and moment s
blocks are equilibrated to an effective width at full yield(Fig. 2).
The effective width is calculated such that the net forces
equal, and the eccentricity is calculated such that the mome
the stress blocks about the supported edge are equal. For th
case shown in Fig. 2, the equations for the plastic effective w
sbed and eccentricity of the resultant force of the yield stress b
from the supported edgeseccd are given by

be

b
=

fCult

fy
=

N

bt

fy
s3d

ecc

b
=

bF fCult

2
+

fMult

6
G

fybe
=

bF N

2bt
+

M

b2t
G

fybe
s4d

Eq. (3) for the plastic effective width is used for all load ca
tested. Eq.(4) for the eccentricity will differ depending on th
load case being analyzed, however, for all load cases the prin

of equating the moment of the ultimate stress blocks about the
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supported edge is used. The eccentricity of the effective w
from the supported and unsupported edges, designated ecce
tyl secc1d and eccentricity 2secc2d, respectively, in Fig. 2, ma
be deduced from the eccentricity of the force and the effe
width. For strain gradients where tension exists in the elem
the plastic effective width factorsbe/bd gives the effective widt
of the compressed portionof the element.

Elastic Effective Width Results

The elastic effective widths are calculated from the applied c
pressive axial forcesNd at the ultimate condition in the tests. T
applied force stress blocksfCultd is equilibrated to an effectiv
width with a linearly varying stress distribution(Fig. 1). For the
load case shown in Fig. 1, the equation for the elastic effe
width is given by Eq.(5). For strain gradients where tens
exists in the element, the elastic effective width factorsrd gives
the total effective width of the element, measured from the
ported edge, and is thus congruent with the effective width fa
(r) currently used in international design standards.

r = 2S fCult

fy
D = 21 N

bt

fy
2 s5d

Strength Curves

Strength curves are presented for all load cases in Figs. 3–
show both elastic effective width resultssrd and plastic effectiv
width resultssbe/bd, derived from both unwelded and weld
plate tests. The residual stress pattern induced in the w
specimens consisted of tension blocks at yield along both l
tudinal edges, and a region of approximately constant com
sive stress elsewhere, approximating that existing in flam
plate elements. The average compressive stress for all w
specimens was 104 MPa. Further details of the process an
magnitude of residual stresses induced are given in Bambac
Rasmussen(2001). All curves are plotted with respect to the n
dimensionalized slenderness ratio[Eq. (1)] where the critica
buckling stresssfcrd is calculated by Eq.(2).

The buckling coefficientskd used in Eq.(2) is calculated fo
each strain gradient form the finite strip programTHINWALL(Pa-
pangelis and Hancock 1995) using the asymptotic value fou
with large half-wavelengths. This is the theoretical solution f
plate simply supported on three sides with the remaining lon
dinal edge free. It is noted that the buckling coefficients give
Appendix F of AS/NZS 4600(1996) [the same as those in Ta
4.2 of Eurocode 3, Part 1.3(1996)], are approximately the sam
as these. Comparisons of the elastic buckling stress resul
tained from the tests with theoretical solutions show suffic
agreement(within 4%) such that the boundary conditions app
by the test rig may be assumed to be simply supported(Bambach
and Rasmussen 2004b). However, due to the inherent scatte
test results for elastic buckling stresses(due to the susceptibili
to imperfections), it is more convenient to use the theoret
solution for the plate buckling coefficient(Bambach and Rasmu
sen 2004b).

For all load cases, strength curves were fitted to the test r
using a curve of best fit approach. It was found that power cu

give the best overall result for plastic effective widths, when con-

OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2004 / 1613

 ASCE license or copyright. Visit http://www.ascelibrary.org



test
ign.
the

th the
o the
inter
until
articu
was
d in

ength
ients

re
width
effec-

.

edge, edge,
sidering that the curve must give a good approximation of the
data, while maintaining a convenient form for structural des
With these two considerations in mind, the coefficients of
power curves were adjusted until reasonable agreement wi
test results was achieved. A similar procedure was applied t
elastic effective width results, where the coefficients of the W
formula for stiffened compression elements were adjusted
reasonable agreement with the test results was achieved. P
lar emphasis when deriving elastic effective width equations
given to maintaining a form congruent with that currently use

Fig. 3. Strength curve for pure compression plate tests comp
=0.43

Fig. 4. Strength curve—compressive strain at the unsupported
zero at the supported edge,k=0.57
1614 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2
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international design standards. The equations for the str
curves derived from plate test results for the four strain grad
tested are presented in Fig. 8.

Pure Compression

The elastic and plastic effective width reduction factors(denoted
by r andbe/b, respectively) derived from the plate tests for pu
compression have the same magnitude, since the effective
is assumed to be at the yield stress for both cases, and the

with Winter formulas and section tests of Kalyanaraman et al(1977), k

Fig. 5. Strength curve—compressive strain at the unsupported
zero at the supported edge,k=0.57
ared
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edge,
tive widths are adjacent to the supported edge. The plastic
tive width equation for this load case is given in Fig. 8 an
compared with the Winter(1947) equation for stiffened compre
sion elements and the Winter(1970) equation for unstiffene
compression elements in Fig. 3(the Winter equations are print
in Fig. 3). Compared with the equations in Fig. 3 are the wri
plate test results and those by Kalyanaraman et al.(1977) on
cold-formed sections. The plastic effective width equation
posed by the writers converges with the Winter unstiffened e

Fig. 6. Strength curve—compressive strain at the unsupported
zero at the supported edge,k=1.70

Fig. 7. Strength curve—pure bending,k=0.85
JOURNAL
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tion at large slenderness values, while sitting slightly belo
smaller slenderness values, particularly at slenderness v
around 1.5, where both the writers’ test results and those b
lyanaraman are overpredicted by the Winter curve for unstiff
elements.

Compressive Strain at the Free Edge, Zero
at the Supported Edge

In Fig. 4 it is shown that a reduced plastic effective width eq
tion is required compared with the case of pure compres
however, the elastic effective width results are in reason
agreement with the Winter equation for stiffened compressio
ements. The eccentricity of the plastic effective width from
supported edgesecc1d and from the unsupported edgesecc2d
(Fig. 2) are given by Eqs.(6)–(8) and are shown in Fig.5.
For lø0.654:

ecc1

b
= 1 −

be

b
s6d

For l.0.654:

ecc1

b
= 0.45 s7d

ecc2

b
= 0.55 −

be

b
ù 0 s8d

Compressive Strain at the Supported Edge, Zero
at the Unsupported Edge

In Fig. 6 it is shown that a reduced plastic effective width eq
tion is required compared with the case of pure compres
however, the elastic effective width results are in reason
agreement with the Winter equation for stiffened compressio
ements. The eccentricity of the plastic effective width from
supported edge was found to be negligible and has been as
to be zero.

Pure Bending with Compression at the Unsupported
Edge

The ultimate condition when deriving plastic effective widths
this load case is taken as the point at which the bending str
a maximum. Due to limitations of the strokes of the actuators
ultimate condition could not be reached in the tests. Ana
using the FEM programABAQUSwas compared with the te
results for the range tested and used to determine the ult
moment. TheABAQUSmodel incorporates the measured mate
properties and imperfections. Further details are present
Bambach and Rasmussen(2004b). The ABAQUSresults for this
load case are shown in Fig. 7, the plastic effective width facto
the compressed portionof the unstiffened element is found to
approximately zero for all slenderness ratios analyzed. This i
to the fact that the net force on the section at ultimate is in ten
and is at a magnitude slightly greater than the force create
assuming half the width of the element is at yield in tension.
results for the effective widths are slightly negative, since
assumed stress state is elastic perfectly plastic, whereas in
strain hardening occurs in the tension zone. It is noted that
ultimate condition for plastic effective widths for this load ca

being the point at which the moment is a maximum, the strain on
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the element is as high as 40 times the yield strain, a conditio
commonly found in sections. The assumption that this is the
mate condition then produces a conservative result for p
effective widths for this load case.

It should be noted that there is no limit applied to this l
case for the slenderness ratio beneath which the element w
fully effective. The reason that even the least slender ele
analyzed(slenderness ratio 0.7) is fully ineffective in the com
pressed portion at ultimate is due to imperfections. While
theoretical buckling stress is approximately 600 MPa, latera
placements are triggered earlier due to the presence of imp
tions, and the nature of the applied strain gradient(compression a
the unsupported edge and tension at the supported edge) is such
that lateral displacements develop rapidly, as observed in
tests. Theoretically there exists a slenderness ratio where th
ment is so stocky that even with imperfections negligible la
displacements occur and the element is fully effective. How
the assumption that for all slenderness ratios for this load cas

Fig. 8. Elastic and plastic effecti
compressed portion of the element is ineffective, simplifies the

1616 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2
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design equations somewhat for plastic effective widths of
ments with maximum compressive strain at the unsupported
and produces a slightly conservative solution.

The ultimate condition when deriving elastic effective wid
for this load case is taken as the point at which first yield oc
in the element. Since the tension zone remains fully effective
corresponds to the point at which the strain at the supported
reaches the yield strain. It is noted that the elastic effective w
equation that corresponds to the test data approaches 0.5
slenderness approaches the practical limit of 3.5(Fig. 7), such
that for slender elements the compressed portion is ineffect

Pure Bending with Tension at the Unsupported Edge

There are no test results for this load case due to the fac
preliminary investigations revealed that the buckling coeffic
for this load case is very high(23.8). As a result, very largeb/ t
ratios in Eg.(2) are required in order to obtain elastic buckl

th equations derived from plate tests
ve wid
stresses. The current limit onb/ t ratios for unstiffened elements
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in AS/NZS 4600(1996) is 60, and from Eq.(1) this produces
slenderness ratio of 0.5(assuming a yield stress of 300 Mp).
Slenderness ratios of 0.75(b/ t ratio 95), 1.0 (b/ t ratio 130), and
1.275(b/ t ratio 155) were analyzed withABAQUSand found to
be fully effective plastically at ultimate, as one might exp
since the strain gradient of compression at the supported edg
tension at the unsupported edge is very stable and does n
courage the development of lateral displacements. Theoret
there exists a slenderness ratio where the element is so s
that lateral displacements occur in the compressed zone
portion then becomes ineffective, however, this is at ab/ t ratio
beyond practical limits, and we can assume then that pra
unstiffened elements under this strain gradient are fully effe
plastically (and are correspondingly fully effective elastica
also).

This result may be further verified if one considers the c
pressed portion of the unstiffened element to be similar to a
ened element under a strain gradient varying from yield to
strain. In AS/NZS 4600(1996), the element has a buckling co
ficient skd of 8 and is fully effective when the slenderness rati
less than 0.673, producing ab/ t ratio from Eq.(2) of 46.7 (as-
suming a yield stress of 300 Mpa). Thus the unstiffened eleme
under bending is fully effective up to ab/ t ratio of s2346.7d
=93.4, which is beyond the limit(60) specified for unstiffene
elements in AS/NZS 4600(1996). Again we have the result th
for all practical unstiffened elements under this load case
element is fully effective.

Design Methods for Effective Widths of Unstiffened
Elements

The plate test results for effective widths of unstiffened elem
under strain gradients are plotted in Figs. 9 and 10 forelastic

Fig. 9. Elastic effective widths—strain gradients
effective widths. The equations presented in Fig. 8 for tested edge
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r

strain ratiosscd of 0, 1, and −1 are shown as solid curves in
figures. The dashed lines in the figures are the results for
mediate edge strain ratios, derived as linear approximation
tween the edge strain ratios tested. Corresponding curves fo
tic effective widths are presented in Bambach and Rasm
(2002).

The equations for intermediate edge strain ratios are pres
as a general design methods forplasticeffective widths in Fig. 11
in a similar format to Appendix F of AS/NZS 4600(1996) and
Table 4.2 of Eurocode 3, Part 1.3(European Committee for Sta
dardisation 1996). In Fig. 11 the equations for the buckling co
ficient skd are unchanged and are based on the assumption th
unstiffened element is simply supported. The proposed p
effective width equations have been inserted in lieu of thos
AS/NZS 4600 and Eurocode 3. It is noted that Appendix F
AS/NZS 4600 refers toscd as the ratio of the edge stresses
culated on the basis of thefull section, and is thus congruent w
the ratio of edge strains described in this paper.

The equations for intermediate edge strain ratios are pres
as a general design method forelastic effective widths by Eqs
(9)–(13). The advantage of this model is that the effective w
factor srd multiplied by the gross element width gives the ef
tive width of the element measured from the supported e
which is congruent with current standards. The buckling co
cients skd given in Fig. 11 may be used in conjuction with E
(9)–(13). The edge strain ratioscd is expressed as the ratio of
ede stresses calculated on the basis of thefull section. The effec
of this on the calculated capacities of sections containing un
ened elements is presented in the companion paper by Bam
and Rasmussen(2004a). The elastic effective width equations
as follows:

Where the compressive stress increases toward the unsti
edge of the element:

maximum compressive strain at the unsupported edge
with
For cù0:
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 ASCE license or copyright. Visit http://www.ascelibrary.org



iffene

l sec-

strain
equa-
wn

esults
y be
stress
ately
plate

rom
ts and
plate
may

mate
tests.
plate
lastic
tress
d
edof
r =
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0.22

l
D

l
, r ø 1 s9d

For c,0:

r = s1 − cd
S1 −

0.22s1 − cd
l

D
l

, r ø 1 s10d

Where the compressive stress decreases toward the unst
edge of the element:
For cù0:

Fig. 10. Elastic effective widths—strain gradien

Fig. 11. Plate buckling coefficients and plastic effective widths
unstiffened elements with stress gradient
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d

r =
S1 −

0.22

l
D

l
, r ø 1 s11d

For c,0:

r = s1 + cd
S1 −

0.22

l
D

l
, r ø 1 s12d

c =
f2
*

f1
* s13d

wheref1
* , f2

* =edge stresses calculated on the basis of the ful
tion.

Conclusions

Plate test results for unstiffened elements under a variety of
gradients are presented in the form of strength curves, and
tions for predicting the effective widths are derived. It is sho
that the difference between welded and unwelded plate test r
is small, such that the same effective width equations ma
applied to both cases. This conclusion applies to a residual
pattern with tension at both longitudinal edges and approxim
constant compression elsewhere, as is found in flame-cut
elements.

It is shown that plastic effective widths at an eccentricity f
the supported edge may be derived from the plate test resul
represent exactly both the ultimate force and moment in the
tests. Elastic effective widths adjacent to the supported edge
also be derived from the plate test results, satisfying the ulti
force but underestimating the ultimate moment in the plate
Both elastic and plastic effective widths are derived from the
test results, and general design equations for predicting e
and plastic effective widths of unstiffened elements under s
gradients are presented. In the companion paper(Bambach an
Rasmussen 2004a), the elastic effective width equations obtain

h maximum compressive strain at the supported edge
ts wit
herein are used to produce a general design procedure for sections

004
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that contain unstiffened elements under stress gradients, a
shown to compare well with section test of 1-sections and cha
sections in minor axis bending.
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