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The objective of this paper is to provide and verify simplified models that predict the longitudinal

stresses that develop in C-section purlins in uplift. The paper begins with the simple case of flexural

stress; where the force has to be applied at the shear center, or the section braced in both flanges.

Restrictions on load application point and restraint of the flanges are removed until arriving at the more

complex problem of bending when movement of the tension flange alone is restricted, as commonly

found in purlin-sheeting systems. Winter’s model for predicting the longitudinal stresses developed due

to direct torsion is reviewed, verified, and then extended to cover the case of a bending member with

tension flange restraint. The developed longitudinal stresses from flexure and restrained torsion are

used to assess the elastic stability behavior of typical purlin-sheeting systems. Finally, strength

predictions of typical C-section purlins are provided for existing AISI methods and a newly proposed

extension to the direct strength method that employs the predicted longitudinal stress distributions

within the strength prediction.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The primary concern with cold-formed steel cross-sections is
that due to their thin-walled nature instability phenomena must
be examined, including but not limited to: local, distortional, and
global buckling modes. Further, due to their lack of symmetry (i.e.,
commonly used C- and Z-section members are singly- and point-
symmetric respectively) an additional issue is that even for
common applications, operating in the elastic range, the sections
may develop a complicated stress response, where conventional
flexure theory (i.e., s ¼ My/I) approximations are grossly inade-
quate.

A common cold-formed steel application that leads to
complicated stress response is the use of C-sections as purlins in
metal building roofs, as shown in Fig. 1 (e.g., this is the common
metal building roof system in Brazil). In uplift, the purlins tend to
twist resulting in the addition of longitudinal stresses due to
partially restrained warping torsion in addition to conventional
bending stress. This paper provides an examination of these
stresses, as well as the means to predict their magnitudes in
design situations, and to determine their influence on elastic
stability and strength.
ll rights reserved.

ira Jr.).

Paulo—EESC, Brazil.
Given that longitudinal stresses are known to have a significant
impact on cross-section stability and strength, in the second part
of this paper we examine the application of these stresses to
strength prediction. The prediction methods examined include:
(a) simple ‘‘R’’ factor reductions as found in D6.1.1 of AISI-S100-07
[1], (b) the application of the new torsion provisions as found in
C3.6 of AISI-S100-07 [1], and (c) a novel extension to the direct
strength method (DSM) of Appendix 1 of AISI-S100-07 [1,2] which
uses the predicted stress demands to assess the local, distortional,
and global stability and strength of the section directly.

It is worthy of noting that existing research on cold-formed
steel purlins and purlin-sheeting systems is extensive. Including
the recent work by Tom Murray and his students on anchorage
forces [4,5] the extensive studies by Hancock and his students and
colleagues including vacuum testing and the examination of
rational elastic buckling analysis in design [6–10] as well as earlier
theoretical and experimental work [11,12] to name but a few.
2. Cross-sections studied

The basic system studied in this paper is that of Fig. 1. The
cross-section dimensions for the purlins are provided in Table 1.
For the trapezoidal sheeting (height ¼ 25 mm, t ¼ 0.43 mm) shell
element based finite element models were utilized to determine
the rotational stiffness, krx, that the sheeting provides to the
purlin, the resulting krx are provided in Table 1 [13]. Span lengths

www.elsevier.com/locate/tws
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pressure = P

w  / 2w / 2 tributary width = w 

pressure

distributed load on purlin: p = P/w 
(note: anti-roll clips at the member ends)

Fig. 1. Purlin-sheeting system under uplift ((a)–based on [3]): (a) isometric and (b) elevation with load from fasteners.

Table 1
Cross-section and rotational spring stiffness.

Section C�bw� bf� d� t krx (kN. m/rad/m)

fb
y

d

t

z z b w

150�60�20�1.5 0.39

200�75�20�2 0.58

250�85�25�2 0.68

250�85�25�3 0.72

Fig. 2. Typical shell element model of bare purlin with uplift load.

Fig. 3. Simple flexural stress.

p

p

Fig. 4. Load application points: (a) load applied at shear center and (b) load

applied at connection.
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vary depending on the cross-section (see Table 1) but in general
vary from 5 to 10 m. Additional material properties assumed
include E ¼ 205,000 MPa, Fy ¼ 300 MPa, and n ¼ 0.3.

A typical shell element model used for determination of the
stress demands is shown in Fig. 2.
3. Fully braced: longitudinal stress demands

In the ideal fully braced case the behavior of a C-section purlin
is well described by simple flexural stresses (s ¼ My/I), as shown
in Fig. 3. For stresses to develop in this manner the section must
be fully restrained from lateral translation and twist (or be loaded
at its shear center). The restraint must be provided in such a
manner that the section does not distort due to the bracing forces.
Some form of blocking accompanied by attachments to both
flanges is known to provide such adequate restraint.
4. Unbraced: longitudinal stress demands

For singly-symmetric sections, such as a C-section, it is well
known that vertical loads must be applied at the shear center
(Fig. 4a) if torsion is to be avoided. However, under uplift in a
purlin the load path requires that the force be transmitted
through the fastener, at mid-width of the flange, considerably
away from the shear center.

The longitudinal stresses developed in pure bending (Fig. 4a)
are compared with those including bending and torsion
(of Fig. 4b) in Fig. 5, for the same load, p. In Fig. 5, sM refers to
the longitudinal stresses from pure bending moment ‘‘M’’ and sB

refers to the longitudinal stresses from the warping torsion
bimoment ‘‘B’’ from Vlasov’s theory [14] (at mid-length). As Fig. 5
indicates the introduction of warping torsion, and associated
bimoment, radically alter the applied stress distribution on the
section, net compressive stresses even end up on the ‘‘tension’’
flange (and vice-a-versa).
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5. Unbraced: Winter’s model for warping torsion stress

Calculation of the longitudinal warping stresses due to torsion
by Vlasov’s theory is involved; fortunately, Winter [15] developed
an accurate approximate method that is fully illustrated in AISI
(2004) [16] and summarized in Fig. 6. The basic idea is similar to
an approximate method long used in I-beam sections: that is, that
warping torsion is resisted by lateral flange bending, thus the
stresses that develop due to warping torsion may be found as
simple bending stresses due to lateral flange bending. For I-beams
the web’s contribution is typically ignored. For C-sections Winter
recommended assuming 1

4 of the web contributed to the flange for
the purposes of determining the lateral flange bending.

As Fig. 6 illustrates the stress distribution is found by
summation of the pure bending stresses (Fig. 6c) with the stresses
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Fig. 5. Cross-section longitudinal stress distribution at mid-span (C 250�85

�25�2, uniform load (p) of 0.02 N/mm, span ¼ 7524 mm).
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Fig. 6. Winter’s model for bending and torsion in a C-section. (a) Load applied at a distan

stress distribution, (d) Idealized section, and (e) Stress distribution at the idealized sec
developed due to torsion (Fig. 6e). The stresses due to torsion are
found by assuming the driving torsion moment (p � e) is restrained
by a moment couple developed in the two flanges with force
pf ¼ p � e/h. Where the flange (flange, lip and 1

4 of the web actually)
is assumed to carry the load pf, through bending, i.e. at mid-span
sB ¼ (pfL

2/8)x/Iy
0 where L is the span length, Iy

0 is the moment of
inertia of the flange, lip and 1

4 of the web about a y-axis through its
own centroid, and x is the distance from that centroid to any part
of the flange, lip, and 1

4 of the web. One final step, consistent with
Winter [15], but not discussed in [16] is that the uniform stress
gradient on the web is ignored in favor of a linear stress gradient
that connects the stresses at the two flanges at their respective
flange/web junctures. Comparison of Winter’s approximate
method with Vlasov’s theory, and shell element based finite
element analysis in ANSYS [17], for the same cross-section as
Fig. 5, is provided in Fig. 7. An excellent agreement is observed.
6. Tension flange braced: longitudinal stress demands

Winter’s model provides a convenient means to understand
the impact of pure bending and pure warping torsion on an
unbraced, in-plane rigid, cross-section. Winter’s model shows that
the impact of load location can be pronounced on the resulting
cross-section. For the purlin of Fig. 1, the sheeting provides
restraint, but only to the tension flange, and the cross-section is
thin enough that distortion is possible. Using shell element based
finite element models in ABAQUS [18] (Fig. 2), we examined the
longitudinal stresses at mid-span for four cases: (a) load through
the flange, but otherwise ‘‘no restriction’’, (b) load through the
flange and the sheeting provides a ‘‘rotational spring’’, (c) load
through the flange and the sheeting provides a ‘‘rotational
spring+lateral restraint’’, and (d) load through the flange, and
lateral restraint provided in ‘‘both flanges’’ as shown in Fig. 8.

If both flanges are restrained, the fully braced pure bending
stresses (s ¼ My/I) results. If both flanges are free and the load is
applied to the flange the pure bending plus pure warping torsion
stresses result. If a small rotational restraint is added to the
ce e from the shear center, (b) Load applied at the shear center (D), (c) Pure bending

tion.
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Fig. 7. Comparison of different models for torsion and bending (C 250�85�25�2, uniform load (p) of 0.02 N/mm, span ¼ 7524 mm).
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Fig. 8. Stress distribution for different kind of connections (C 250�85�25�2 uniform load (p) of 0.02 N/mm, span ¼ 2052 mm).

Fig. 9. Cross-section distortion associated with linear elastic deformations of a

tension flange restrained purlin under uplift, ends are fully simply supported.
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tension flange, the stresses due to warping torsion are decreased
modestly. If full lateral support is also provided to the tension
flange, the stresses and their distribution change dramatically.
With the lateral restraint in place the tension flange stresses
follow a pure bending distribution (but elevated from s ¼ My/I)
while the compression flange stresses follows a reduced version of
the bending plus torsion distribution.
Looking more closely at case c, where it is assumed that the
sheeting can provide full lateral restraint and partial rotational
restraint to the tension flange, Fig. 9 provides the linear elastic
displaced shape. The key feature of the deformations is that the
cross-section distorts, and as shown in the stress demands, one is
left with a combination primarily of bending in the tension flange
and bending plus warping torsion in the compression flange. Based
on this observation a modification to Winter’s model to determine
the stresses when tension flange restraint is present is developed.
7. Tension flange braced: extending Winter’s model

In this section Winter’s model for determining the longitudinal
stresses (Fig. 6) is extended to the specific case of a C-section in
bending with tension flange restraints. The tension flange
restraint consists of full lateral restraint and a rotational spring.
The basic concept of the proposed model is provided in Fig. 10.
The stresses due to pure bending (sM) are assumed as before, the
stresses due to torsion (sB) are modified to provide an appropriate
solution for the case where lateral tension flange restraint exists.
In that case, warping and its associated stresses are assumed to
concentrate in the compression flange; further the entire web
height (as opposed to 1

4 of the web) are assumed to participate in
resisting the lateral flange bending, as illustrated in Fig. 10d–f.
The rotational spring influences strongly whether sM or sB is
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Fig. 10. Proposed model for bending and torsion with tension flange restraint. (a) Load applied at a distance e from the shear center, (b) Load applied at the shear center (D),

(c) Pure bending stress distribution, (d) Idealized section, (e) Stress distribution at the idealized section, and (f) Stress distribution to be superposed.
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Fig. 11. Comparison between shell element FEM and proposed model (C 250�85�25�2 uniform load (p) of 0.02 N/mm, span ¼ 7254 mm).

L.C.M. Vieira Jr. et al. / Thin-Walled Structures 48 (2010) 33–41 37
dominant and is captured in the coefficients sM and sB as given in
Eq. (1) below.

The stresses in a C-section cross-section with tension flange
restraint may be determined via:

s ¼ aMsM þ aBsB� ð1Þ

where, sM is the pure bending stress, as illustrated in Fig. 10c, sB*

the warping stresses when tension flange is laterally restrained, as
provided in Fig. 10f, aM the empirical factor to account for
influence of tension flange rotational spring, krx, on the pure
bending stress contribution, and aB the empirical factor to account
for influence of tension flange rotational spring, krx, on the
stresses developed due to warping torsion.

The important feature of the above model is that it has the
capability to capture stress distributions from pure bending
(aM ¼ 1.0, aB ¼ 0.0) to partial restraint. For example, for the C
250�85�25�2 with a tension flange rotational spring of
krx ¼ 0.68 kN m/rad/m, and full lateral tension flange restraint at
mid-width, the appropriate aM and aB are found and the resulting
stress distribution from the proposed model compared with shell
element based FEM is given in Fig. 11. The result shows excellent
agreement with the overall distribution of stresses and good
agreement with the peak stresses and stresses in the lips.



ARTICLE IN PRESS

0.85

0.95

1.05

1.15

1.25

1.35

1.45

1001010.10.01
krx

α

αB

Range Analyzed

Lucas (1997)

αM

Fig. 12. Variation of aM and aB as a function of krx (for C 250�85�25�2, span ¼ 7254 mm).

1

1.1

1.2

1.3

1.4

1.5

1.6

α M

C 150x60x20x1.5

C 200x75x20x2

C 250x85x25x2

C 250x85x25x3

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

0
Span (mm)

α B

C 150x60x20x1.5

C 200x75x20x2

C 250x85x25x2

C 250x85x25x3

5000 10000 15000 20000

0
Span (mm)

5000 10000 15000 20000

Fig. 13. Variation of aM and aB as a function of span length and section.

L.C.M. Vieira Jr. et al. / Thin-Walled Structures 48 (2010) 33–4138
8. Study of coefficients aM and aB

The proposed model for predicting the stress demands in a
purlin with tension flange restraint is empirical and dependent on
determination of coefficients aM and aB. For the case of Fig. 11, aM

was found to be 1.45 and aB to be 0.93 by minimizing the sum
squared error between the model s ¼ aMsM+aBsB* and the finite
element results (at the node locations of the FE model). The fact
that aM is greater than 1.0 does not imply that more ‘‘moment’’ M
has been applied to the cross-section, but rather the amount
which aM is above 1.0 reflects the impact of the torsion on this
tension flange restrained section. Thus, the contribution due to
bending may be recognized as 1.0sM and the contribution due to
the restrained torsion as 0.45sM+0.93sB*.
The tension flange braced case summarized in Fig. 11 is for
lateral restraint at mid-width of the flange and krx ¼ 0.72 kN
m/rad/m, as given in Table 1. The influence of the tension flange
rotational spring (krx) on the stress distribution is captured in
Fig. 12 through the aM and aB coefficients. For practical krx

values the stress distribution is only modestly changed by the
rotational spring. For large krx aM and aB trend to constant
values, but aM does not go to 1.0 and aB to 0.0, because the cross-
section still distorts and the torsion cannot be fully restrained
from the tension flange alone. For small krx aM and aB also
become constant, in this case reflecting the influence of the
lateral restraint. The limiting values of aM and aB are cross-
section, member length, loading, and boundary condition
dependent.
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The variation of aM and aB for different cross-sections
and span lengths are provided in Fig. 13. Over the practical
range of lengths aM and aB vary considerably, reflecting the fact
that moment (p L2) and bimoment (torsion) vary differently as a
function of length. However, despite this variation the limiting
values of aM and aB for short span length are essentially cross-
section independent; and independent of krx. For long span
lengths aM approaches 1.0 and aB approaches 0.0, but as Fig. 13
shows, and Fig. 14 more directly indicates, even at impractically
long span lengths the pure bending case is still not quite reached.
9. Design methods: AISI specification

Purlins with tension flange restraint are a longstanding
problem in cold-formed steel design. In AISI-S100-07 [1] such
purlins are designed per Section D6.1.1, or by testing. Section
D6.1.1 defines the nominal capacity in bending, MnR, as:

MnR ¼ RDSeFy ð2Þ

where, RD is a reduction factor based on the depth of the beam
and falls between 0.4 and 0.7, Se is the effective section modulus
(determined based on pure bending stress) and accounts for local
buckling, and Fy the yield stress.

In 2007, AISI-S100 adopted a new method, Section C3.6, to
account for the influence of torsional stresses on section capacity.
While the method is specifically excluded from purlins with
tension flange restraint (due to the existence of Section D6.1.1) it is
included here to understand better this important case. The C3.6
method uses a similar format as D6.1.1, where the nominal
capacity, MnT, is defined as:

MnT ¼ RTSeFy ð3Þ

The reduction factor, RT, is the ratio of the bending stress to the
combined bending plus warping stress at the location of
maximum combined stress; i.e. if (x*, y*) is the location in the
cross-section where s(x*, y*) ¼ max|sM+sB|, then for an unbraced
section:

RT ¼ sMðx
�; y�Þ=½sMðx

�; y�Þ þ sBðx
�; y�Þ� ð4Þ

Further, if (x*, y*) is at the web/flange juncture R may be
increased by up to 15%, but not to exceed 1.0.
10. Design methods: extending direct strength method

In the direct strength method the nominal moment capacity,
Mn, is defined through a series of expressions that may be
summarized functionally as:

Mn=My ¼ f ðMcr‘ =My;Mcrd=My;Mcre=MyÞ ð5Þ

where the functions (f) are given in Appendix 1 of AISI-S100, and
Mcr‘ =My; Mcrd=My, and Mcre/My are the elastic local, distortional,
and global buckling moments normalized by the moment at first
yield, My. If one analyzes the stability of the section assuming
s ¼ My/I (aM ¼ 1.0, aB ¼ 0.0) as is common, but with the tension
flange restraint in place, the results for typical cross-section
stability using CUFSM [19] are provided for the C
250�85�25�2 section in Fig. 15. The first two minima
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Table 2
Comparison of design methods.

Section Span (m) AISI D6.1.1 AISI C3.6 Direct strength method MnDSM2/SeFy

s ¼ 1.0sM s ¼ aMsM+aBsB
a

RD MnR (kN m) RT
a MnT (kN m) MnDSM1 (kN m) MnDSM2 (kN m)

150�60�20�1.5 4.8 0.7 4.26 0.70 4.26 4.45 2.92 0.48

6.5 0.76 4.63 3.35 0.55

200�75�20�2 5.8 0.65 8.69 0.71 9.49 9.02 6.14 0.46

8.2 0.77 10.29 7.33 0.55

250�85�25�2 7.5 0.4 7.86 0.71 13.95 11.70 8.14 0.41

9.6 0.74 14.54 8.74 0.44

250�85�25�3 7.5 0.4 12.17 0.74 22.52 17.64 14.83 0.49

9.6 0.79 24.04 15.38 0.51

a 15% increase for max stress at web/flange juncture not applied.

2 In addition to including the reference applied stress s ¼ aMsM+aBsB*, the

lateral restraint and rotational spring, krx, at mid-width of the tension flange are

also included. Thus, the finite strip model is an attempt to model the complete

system, under its expected nonlinear stress distribution.
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indicate Mcr‘ =My ¼ 1:18; and Mcrd/My ¼ 1.20, while the third
minima is an unusual feature of including the restraint in the
finite strip model, and is a form of restrained lateral-torsional
buckling often referred to as lateral-distortional buckling
(Mcre/My ¼ 0.56).

Inherent in the DSM expressions and the preceding stability
analysis is the assumption that only pure bending exists in the
cross-section. As previously shown herein, this is not the case.
How can the DSM moment expressions be extended to cover this
case? To extend DSM it is proposed that the elastic stress
distribution on the section with the maximum combined stresses
be employed for determination of local, distortional, and global
buckling.
The first step is to determine when first yield occurs, for a
given pressure, p, the stress is determined and the values scaled
such that s(x*, y*) ¼ Fy, as shown in Fig. 16a, for one of the
C-sections studied herein. The pressure corresponding to this
stress distribution is termed py. Next perform the cross-section
stability analysis with the applied stress distribution defined by py

2

and determine pcr‘ =py; pcrd=py; and pcre/py as shown in Fig. 16b.
These non-dimensional ratios replace the M ratios in all of the DSM
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equations and provide a prediction of the capacity. For the simply
supported case, and given the distributed load along the purlin, p,
the distributed load pn is converted back to moment Mn via:

Mn ¼ pn‘
2=8 ð6Þ

thus providing a prediction for the moment that the member will
carry (in the presence of that moment plus associated bimoment
from the loading).
11. Comparison with design methods

The design methods are compared for the sections, restraint,
and span lengths of Table 1 and provided in Table 2. The R-factor
method of AISI D6.1.1 provides a reduction in the strength as the
section depth increases. This reduction (RD) does not follow the
same trend as the ratio of maximum bending stress to maximum
combined stress (RT). Both of the AISI methods use local stability
under the pure bending stress (i.e., that is what SeFy is a measure
of) and ignore the actual state of stress in their attempt to
empirically correct the strength.

The importance of considering stability for the actual com-
bined stress is highlighted by the results of Figs. 15 and 16b, and
shown to impact the strength significantly in Table 2 for the DSM
solutions. Another interesting feature of including the actual
combined stress is that strength is predicted to increase with span
length. This counter-intuitive result occurs because the bimoment
has less influence on the stress at longer lengths; a fact also
reflected in RT. To readily compare DSM under the combined
stresses with the AISI methods MnDSM2 is divided by SeFy to
provide an equivalent prediction for ‘‘R’’ in the final column of
Table 2. The DSM method predicts that span length is more
important than section depth, and shows smaller variation in
predicted R.
12. Future research

Generalization of the method (aM, aB) for determining stress
demands with tension flange restraint is needed. In particular,
partial lateral restraint needs to be accounted for, as does varying
member end conditions (i.e., presence or lack of anti-roll clips).
Extension of the design method comparison to a greater number
of sections and comparison to experimental capacities is also
needed.
13. Conclusions

When singly symmetric sections are used as bending members
they may be subjected to relatively complex combined long-
itudinal stresses due to the presence of bending and warping
torsion. For the specific case of a member with bracing and
loading along the tension flange, Winter’s approximate method is
empirically extended to predict the combined stresses. These
combined stresses have a significant impact on the stability and
strength of the member, as illustrated through a novel extension
of the direct strength method for the design of members under
such combined stresses. Work remains to generalize the proposed
methods and compare with available experiments.
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