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Abstract 

The objective of this paper is to provide technical background and illustrative 
examples for stability analysis of cold-formed steel members using the 
conventional and constrained finite strip methods as implemented in the open 
source program CUFSM. Numerical stability analysis combined with an 
accurate identification of the buckling modes is an enabling first step in the 
implementation of new design methods such as the Direct Strength Method. In 
this paper conventional finite strip method analysis identical to that employed in 
CUFSM is derived from first principles. The methodology closely mirrors that 
of standard matrix methods for structural analysis, widely used by engineers, 
and can be readily programmed by the interested reader. An example of the 
stability solution for an industry standard lipped channel is provided. Recently, 
CUFSM has been extended to include application of the constrained finite strip 
method. Using formal mechanical definitions of the buckling classes: global, 
distortional, local, and other deformations, the constrained finite strip method 
can provide both modal decomposition and modal identification to a 
conventional finite strip solution. Modal decomposition allows the conventional 
finite strip solution to be focused on any buckling class (e.g., global, distortional, 
or local only), resulting in problems of reduced size and definitive solutions for 
the buckling modes in isolation, as demonstrated for an example section. Modal 
identification allows the results of a conventional finite strip solution to be 
judged with regard to the participation of the buckling classes; and thus provide 
a measure of buckling mode interaction. The conventional finite strip method 
combined with the constrained finite strip method provides a powerful tool for 
understanding cross-section stability in cold-formed steel members. 
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Introduction 

Cold-formed steel members are thin, light, and efficient. However, this 
efficiency comes with complication: engineers must consider buckling of the 
thin walls of the cross-section in addition to global (e.g., flexural or lateral-
torsional) buckling of the member. Classical hand solutions to these instabilities 
become unduly cumbersome for more complex buckling modes, such as 
distortional buckling; and may ignore critical mechanical features, such as inter-
element equilibrium and compatibility. To remedy this, the engineer may turn to 
numerical solutions such as the finite strip method (FSM). 
 
Conventional FSM provides a means to examine all the possible instabilities in a 
cold-formed steel member under longitudinal stresses (axial, bending, or 
combinations thereof). CUFSM is an open source FSM program, freely 
available from the first author of this paper, that provides engineers with this 
capability (www.ce.jhu.edu/bschafer/cufsm). The basic framework of the FSM 
stability solution will be familiar to anyone who has studied matrix structural 
analysis. In this paper the underlying elastic and geometric stiffness matrices are 
derived and shown in closed-form so that users can become more familiar with 
this tool and more comfortable with employing FSM solutions in design. In 
addition, an example of a conventional FSM solution is provided. New design 
methods such as the Direct Strength Method become highly efficient for the 
engineer when FSM stability solutions are employed. 
 
Recently, extensions to the conventional FSM solution have been explored, 
namely, the constrained finite strip method, or cFSM. A cFSM solution provides 
a means for (1) stability solutions to be focused only a given buckling mode 
(modal decomposition), or (2) a conventional FSM stability solution may be 
classified into the different fundamental buckling modes (modal identification). 
Modal decomposition is accomplished by forming a series of constraint 
equations which describe a particular buckling class, i.e., local, distortional, or 
global buckling. A conventional FSM solution is then constrained to the selected 
buckling class and stability analysis performed. Since the number of degrees of 
freedom (DOF) within a class are much less than the full model, modal 
decomposition also results in significant model reduction. In this paper the 
criteria used to define the classes are provided, and implementation of the 
constraints is demonstrated. Modal identification employs the developed 
constraint equations as a means to transform the solution basis from the nodal 
DOF to modal DOF associated with the classes. This allows a buckling mode to 
be identified in terms of its contribution from the different classes. Formal 
definition and an example of modal identification are provided. The 
implementation of cFSM discussed herein is completed in CUFSM. 



 

Conventional Finite Strip Method  

In the finite strip method (FSM) a thin-walled member, such as the lipped 
channel of Figure 1, is discretized into longitudinal strips. The advantage of 
FSM over other methods, such as the finite element method which applies 
discretization in both the longitudinal and transverse direction, is dependent on a 
judicious choice of the shape function for the longitudinal displacement field. In 
Figure 1 a single strip is highlighted, along with the degrees of freedom (DOF) 
for the strip, the dimensions of the strip, and applied edge tractions (loads).  
 

v1
v2

b

x
y

z

a

T1=f1t T2=f2t

u1

w1

θ1

u2

w2

θ2

v1
v2

v1
v2

v1
v2

b

x
y

z

a

T1=f1t T2=f2t

u1

w1

θ1

u2

w2

θ2

v1
v2

 
Figure 1 Finite strip discretization, strip DOF, dimensions, and applied edge tractions 

Elastic stiffness matrices 

The vector of general displacement fields: u = [u v w]T is approximated by the 
displacement at the nodes, d, and selected shape functions, N, via 

u = Nd = [Nuv Nw] [duv
T | dwθ

Τ]T 

where the nodal displacements in local coordinates are shown in Figure 1 and 
may be explicitly written as d = [u1 v1 u2 v2 | w1 θ1 w2 θ2]T or in partitioned form 
d = [duv

T | dwθ
Τ]T

. For the in-plane, or membrane, displacements u and v linear 
shape functions are employed in the transverse direction, and in the longitudinal 
direction u employs a sin function and v a cos function for displacement:  
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Out-of-plane displacement, w, is approximated by a cubic polynomial:  







 π



















θ

θ




















−








−








+−








+−=

a
ym

w

w

b
x

b
xx

b
x2

b
x3

b
x

b
x21x

b
x2

b
x31

2

2

1

1

2

2

3

3

2

2

2

2

3

3

2

2

sinw  



 

The strain in the strip is decomposed into two portions: membrane and bending. 
The membrane strains, εm, are at the mid-line of the strip and are governed by 
plane stress assumptions. The bending strains, εb, follow Kirchoff thin plate 
theory and are zero at the mid-line and a function of w alone.  

ε = εm+ εb 

εm = uvmuv
'
uv dBdN ==

















∂∂+∂∂
∂∂
∂∂

=
















γ
ε
ε

xvyu
yv
xu

mxy

y

x

 

εb = wθbwθ
'
w dBdN ==

















∂∂∂
∂∂−
∂∂−

=
















γ
ε
ε

'

2

22

22

bxy

y

x

yxwz2
ywz
xwz

 

As shown above εm and εb may be written in terms of appropriate derivatives of 
the shape functions, N, and the nodal displacements, d. The elastic stiffness may 
be understood through a statement of internal strain energy: 
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Where the stress is connected to the strain by an orthotropic plane stress 
constitutive relation: σ = Eε, and E=ET. Since the membrane behavior (u, v) is 
uncoupled from the bending behavior (w) separate elastic stiffness matrices may 
be derived for each, where 
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Substitution and integration leads to the following closed-formed solution for 
the membrane, kem, and bending, keb, elastic stiffness matrices: 
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Geometric stiffness matrices 

Consider the member to be loaded with linearly varying edge tractions (T1, T2) 
as shown in Figure 1. The geometric stiffness matrix may be determined by 
considering the additional potential energy incurred as these edge tractions 
displace longitudinally (in the y direction); or equivalently in terms of higher-
order strain definitions (i.e., the Green-Lagrange strain): 
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The derivatives of the displacement fields may be written in terms of derivatives 
of the shape functions, N, and nodal displacements, d, similar to the elastic 
stiffness solution. For example, for bending, w: 
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Introducing this notation into the earlier potential energy statement leads to a 
formal definition of the geometric stiffness matrix, kg. 
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Similar to the elastic stiffness matrix, kg may be broken into two parts. One 
related to the u and v displacement fields, or membrane deformations, kgm, and 
one related to w, or bending, kgb: 
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Substitution and subsequent integration lead to the following closed-form 
expressions for the geometric stiffness matrices: 
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Global stiffness matrices and assembly 

To form the global elastic (Ke) and geometric stiffness (Kg) matrices each 
individual strip must be transformed from local to global coordinates and then 
assembled. A note on notation, local DOF are denoted by lowercase u, v, w, θ 
and global DOF by uppercase U, V, W, Θ; further, stiffness matrices in the strip 
local coordinate system are a lowercase k, and in the global system an uppercase 
K is used. The local to global transformation at node “i” for strip “j” which is 
oriented in the left-handed coordinate system of Figure 1 at an angle α(j) is 
governed by the following transformations:  
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These may be collected into a matrix form for all DOF in strip j as 
)j()j()j( DΓd =  

Transformation of the stiffness matrices of strip j follows from: 
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With all DOF in global coordinates the global stiffness matrices may be 
assembled as an appropriate summation of the strip stiffness matrices, where: 
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Stability solution 

For a given distribution of edge tractions on a member the geometric stiffness 
scales linearly, this leads to the stability eigenvalue problem of interest, which 
for a single eigen (buckling) mode, φ, and eigen (buckling) value λ may be 
expressed as: 

Keφ = λKgφ 

Both Ke and Kg are a function of the strip length, a. Therefore, the elastic 
buckling value and the corresponding buckling modes are also a function of a. 
The problem can be solved for several lengths, a, and thus a complete picture of 
the elastic buckling value and modes can be determined. The minima of such a 
curve can generally be considered as the critical buckling loads and modes for a 
member. CUFSM follows this implementation and an example is provided in 
Figure 2. Given the selected longitudinal shape functions, a is generally known 
as the half-wavelength. 
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Figure 2 Conventional FSM analysis of an SSMA 600S200-68 structural stud 



 

In the conventional FSM described above the selected shape functions result in 
members that are pinned and free-to-warp at their ends. More complicated 
boundary conditions are possible, but require the longitudinal deformations of u, 
v, w to be defined in terms of a series (or splines) and result in much larger and 
more complicated eigenvalue problems (see e.g., Bradford and Azhari 1995). 
Further, more exact treatments of the deformations may employ higher order 
polynomials for the transverse displacements (e.g., see Rhodes 2002). For a 
complete treatment of finite strip derivations, and applications beyond member 
stability, see Cheung and Tham (1998). Finite strip solutions that use the shape 
functions presented here are the most common in thin-walled stability and will 
be termed the semi-analytical or conventional FSM. CUFSM (Schafer 2006) 
provides a solution in this form as does CFS (CFS 2006) and THIN-WALL 
(Papangelis and Hancock 1995, 2006).  
 
Definition of the buckling classes 

As the FSM analysis of Figure 2 demonstrates, stability of cold-formed steel 
members can typically be categorized into one of three classes: global (G), 
distortional (D), or local (L). A convenient means for this classification is the 
minima of the conventional FSM analysis results. However, while convenient, 
this definition is by no means general and depends on the details of the cross-
section and loading. Sometimes minima may not exist, or extra minima may 
exist. Qualitative definitions for the classes are also possible, for example the 
Commentary to the Direct Strength Method (Appendix 1 NAS 2004), but again 
such classifications are not general. Another characterization with some 
popularity relies on the relative contribution from membrane versus bending 
effects. For example, the strain energy, broken into terms derived from the 
membrane (kem) and from bending (keb) are given in Figure 3 (as provided in 
CUFSM). As the plots illustrate, each mode class has a certain characterizing 
energy distribution over the cross-section: e.g., local modes involve only 
bending strain energy. Definitive classification using any of the above methods 
remains elusive. 
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Figure 3 Strain energy related to membrane and bending deformations for the buckling modes 



 

To provide a means of rigorous classification mechanical definitions have been 
selected. Given the lack of alternative proposals, the criteria applied in 
generalized beam theory (GBT) are used, (Silvestre and Camotim 2002a,b), 
which are found to usually be in good agreement with current engineering 
classifications. The separation of G, D, L and other (O) deformation modes are 
completed through selective implementation of the following three criteria. 
Criterion #1: (a) (γxy)m = 0, i.e. there is no in-plane shear, (b) (εx)m = 0, i.e. there 
is no in-plane transverse strain, and (c) v is linear in x within a flat part (i.e. 
between any two fold locations). Criterion #2: (a) v ≠ 0, i.e. the warping 
displacement is not constantly equal to zero along the whole cross-section, and 
(b) the cross-section is in transverse equilibrium. Criterion #3: κxx = 0, i.e. there 
is no transverse flexure. 
 

Table 1 Mode classification criterion 
 G 

modes 
D 

modes 
L 

modes 
O 

modes 
Criterion #1 – Vlasov’s hypothesis Yes Yes Yes No 
Criterion #2 – Longitudinal warping Yes Yes No - 
Criterion #3 – Undistorted section Yes No - - 

 
Application of the criterion to the G, D, L, and O buckling mode classes is 
defined in Table 1. Criterion 1 may be understood as being tied to classical 
beam theory, or, Vlasov’s hypothesis, and restricts certain membrane 
deformations, while allowing warping. Criterion 2 implies that warping 
(longitudinal, or v deformation) must be non-zero, thus providing a separation 
between local plate deformations which have no deformation at the mid-plane of 
the plate and other deformation modes. Criterion 3 relates to distortion of the 
cross-section and provides a means to separate G from D. While the modes 
implied by these criteria are in accordance with current practice for a wide range 
of practical problems; cases do exist where the applied definition leads to results 
not in-line with current engineering practice. Further comparison of cFSM with 
GBT is provided in Ádány et al. (2006). 
 
Constrained Finite Strip Method 
Application of buckling classes through constraints 

Consider the membrane deformations duv of a single finite strip, as shown in 
Figure 4. Introducing the first constraint from criterion #1, (εx)m=0 results in  
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and since the sine function is generally not equal to zero, u1 and u2 must be equal 
to each other in order to satisfy the equality. This implies that the transverse 
displacements of the strip’s two nodal lines must be identical, which is a natural 
consequence of the zero transverse strain assumption. In practice, the identical u 
displacements prevent those deformations where the two longitudinal edges of 
the strip are not parallel, as illustrated in Figure 4. 
 

 
Figure 4. Effect of (εx)m = 0 strain constraint on membrane deformations 

 
The above derivation demonstrates that the introduction of a strain constraint 
reduces the number of DOF, in this particular case from 4 to 3. Thus, we can 
define the new, reduced DOF by u, v1 and v2, while the relationship of the 
original and reduced displacement vectors can be expressed as follows: 
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  or  duv = Rduv-r 

where R is the constraint matrix, which is a representation of the introduced 
strain constraints. For more general strain-displacement constraints (i.e., the 
other criteria), and more general cross-sections, the derivations are more 
complicated, but finally the associated constraint matrices (R) can be defined, as 
shown in Ádány and Schafer (2006a,b) for G and D modes and Ádány (2004) 
for L and O modes, and thus apply for all the criterion summarized in Table 1. 
Since a different R matrix may be constructed for each of the modal classes: G, 
D, L, and O, taken together they span the entire original nodal FSM basis and 
represent a transformation of the solution from the original nodal basis to a basis 
where G, D, L, and O deformation fields are segregated, so, for any vector of 
nodal displacements in global coordinates, D:  

D = [RG RD RL RO]Dr = RDr 
represents the transformation. The partitions of the R constraint matrices are the 
deformation fields associated with the G, D, L, and O spaces that meet the 



 

criterion of Table 1, while columns of R corresponds to individual deformation 
modes For the SSMA 600S200-068, R for the G, D, and L spaces are provided 
graphically in Figure 5. For example, the first four deformations in Figure 5a 
and b provide the warping displacements and transverse displacements for the G 
modes, i.e. 

RG = [G1 G2 G3 G4] 

 

 
G1/O1 G2 G3 G4 D1 D2 

(a) warping displacements of RG and RD 

 
G1/O1 G2 G3 G4 D1 D2 

(b) transverse displacements of RG and RD 
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(c) transverse displacements of RL 
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(d) transverse displacements of first 8 RLu modes when transformed to unit-member axial modes 

Figure 5 Deformation modes spanning G, D, L for SSMA600S200-068 based on cFSM 
 
An important characteristic of the RG and RD deformations is that the transverse 
displacements are uniquely defined by the warping displacements. For RL 
Figure 5c provides the transverse displacements (note, no warping occurs in the 



 

L modes). As shown, these L modes appear to be in the original FSM nodal 
DOF basis, but they can be transformed into a modal basis, as discussed below.  

Additional transformations inside the G, D, L, O spaces are possible and 
desirable. One attractive option is to use unit-member axial modes as detailed in 
Ádány and Schafer (2006b), which, as the name suggests, are the modes for a 
member of unit-length under axial load within a given space, for example RL is 
transformed to RLu as Figure 5d demonstrates. These modes may have 
physically desirable characteristics in some situations. Finally, the O modes 
(RO), associated with shear and transverse extension are not shown here, but are 
discussed in detail in Ádány (2004) and Schafer and Ádány (2006). 
 
Modal decomposition 

In the conventional FSM the complete stability problem is solved. However, in 
cFSM it is possible to constrain the deformations down to only a specific class 
and thus decompose the modes. For example, consider an analysis focusing only 
on distortional buckling. Constraint of the deformations from the nodal 
coordinates to the generalized coordinates in the D space is accomplished by: 

D = RDDD 

Application of this transformation on the eigen stability problem results in a 
constrained eigen stability problem: 

RD
TKeRDφD = λRD

TKgRDφD  or  KeDφD = λKgDφD 

This decomposed stability problem is much smaller than the original stability 
problem. For the SSMA 600S200-068 example used in this paper the original 
FSM model consists of 40 DOF, but the decomposed model consists of only 2 
DOF – the generalized deformations associated with D1 and D2. While the 
model reduction is potentially beneficial, even better is the reduction in 
mechanics – restriction to a selected space (e.g., D) allows one to study a mode 
in detailed ways that cannot be completed in conventional FSM analysis. 
 
The G, D, and L modes are decomposed from the general solution using the 
procedure described above and the calculated critical forces are plotted against a 
conventional FSM solution for the 600S200-068 section in Figure 6. The L and 
mode solution shows excellent agreement with the conventional FSM minima. 
The D mode solution suggests a somewhat stiffer response than the conventional 
FSM. For distortional buckling, bending in the web is greater in a conventional 
FSM than in the decomposed cFSM solution (this is shown in the insets to 
Figure 6, but also may readily be seen in strain energy plots). The relative 
difference between the conventional FSM minima for D and the cFSM solution 



 

is typically smaller in most lipped channels studied by the authors; but in 
general a difference exists. (Note, this implies a difference between GBT 
distortional mode solutions and conventional FSM solutions as well). The G 
mode curve shows the same tendency as a conventional FSM solution, for long 
members, however the critical loads are somewhat higher. The difference is due 
to the fact that in-plane transverse deformations are fully restricted in G modes, 
as discussed in Ádány and Schafer (2006b). 
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Figure 6 FSM and cFSM solutions for SSMA 600S200-068 

 
Modal identification 

It is desirable to understand how the different buckling classes (G, D, L, and O) 
contribute in a conventional FSM stability solution. Indeed, one long-term goal 
of this research is to provide a classification method that may be used not only 
in FSM but in general purpose FEM as well. Any displaced shape, D, or 
buckling mode, φ, may be transformed into the basis spanned by the buckling 
classes through the use of R, via 

Dr = R-1D  or  φr = R-1φ 

where the coefficients in Dr (or φr) provide the contribution to a given column of 
R, or when summed over columns the contribution in a given class. However, 
the coefficients are dependent on the normalization of the columns of R. A 
definitive normalization scheme has not been finalized. If Ri is the ith column 
vector of R, two normalization schemes are considered here. 
 



 

Vector norm: normalize by setting ||Ri|| = 1. Any displacement is expressed as a 
linear combination: φ = ΣciRi = Rc, participation, pi, of mode i is defined by pi = 
|ci|/Σ|ci| where the summation is over all modes. 
 
Weighted strain energy norm: normalize by setting ½Ri

TKeRi = 1. Any 
displacement is expressed as a linear combination: φ = ΣciRi = Rc, participation, 
pi, of mode i is defined by pi=|ci/λi

0.5|/Σ|ci/λi
0.5| where the coefficients are 

weighted by the eigenvalue in that mode alone, i.e. λi = Ri
TKeRi/Ri

TKgRi.  

The contribution of a mode class which spans n columns of R is defined as: 

∑
=

modes n

1i
i np  

Using these definitions (implemented in CUFSM) modal identifications are 
performed on the SSMAS200-068 and reported in Figure 7. Both methods show 
the expected regimes of L, D, and G; however it is also clear that the different 
norms do provide different notions of the response. For instance, at the half-
wavelength of the distortional minima L has a non-negligible participation with 
D. This provides further commentary to the results of Figure 6 where a D only 
solution for stability proves stiffer than a conventional FSM solution.  
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Figure 7 Modal identification results for SSMA 600S200-068 

 
The vector norm is perhaps the simplest possible participation scheme, and it is 
most similar to that used by GBT; however it lacks a physical basis, is 
dependent on the discretization of the member, is dependent on the system of 
units the problem is solved in, and generally discounts the impact of rotations as 
translations are typically several orders of magnitude larger. The weighted strain 



 

energy norm provides a physically motivated normalization and reasonable 
identification results. The O mode contribution observed in Figure 7 is 
consistent with the findings in Schafer and Ádány (2006) which demonstrates 
that conventional FSM includes an O mode contribution in global buckling. 
 
Discussion 

As shown in Figure 6 and Figure 7 minima identified in a conventional FSM 
solution are not necessarily pure mode solutions. This has ramifications for 
design methods that employ these critical buckling values. In addition, it further 
complicates the application of simple qualitative modal identification methods 
and suggests that quantitative methods such as that provided in cFSM are 
needed. Further discussion of challenges related to cFSM is provided in Schafer 
and Ádány (2006). 
 
Conclusion 

The conventional finite strip method combined with the constrained finite strip 
method provide a powerful tool for exploring cross-section stability in cold-
formed steel members. In the conventional finite strip method elastic and 
geometric stiffness matrices are formed from a summation of cross-section strips 
and employed in an eigenvalue stability analysis. The stiffness matrices are 
explicitly derived in this paper and can readily be used in engineering software. 
The provided solution is identical to that employed in the open source stability 
analysis program: CUFSM. The constrained finite strip method is described and 
examples of its application provided. The strength of this new extension to finite 
strip solutions is the ability to decompose and identify conventional finite strip 
solutions as related to buckling classes of interest: global, distortional, or local 
buckling. The examples provided here show the potential use of the constrained 
finite strip method, and the algorithms discussed are implemented in CUFSM. 
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