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Abstract—We present an optimized multi-GPU version of
GPUSPH, a CUDA implementation of fluid-dynamics models
based on the Smoothed Particle Hydrodynamics (SPH) numer-
ical method. SPH is a well-known Lagrangian model for the
simulation of free-surface fluid flows; it exposes a high degree
of parallelism and has already been successfully ported to GPU.
We extend the GPU-based simulator to exploit multiple GPUs
simultaneously, to obtain a gain in speed and overcome the
memory limitations of using a single device. The computational
domain is spatially split with minimal overlap and shared volume
slices are updated at every iteration of the simulation. Data
transfers are asynchronous with computations, thus completely
covering the overhead introduced by slice exchange. A simple yet
effective load balancing policy preserves the performance in case
of unbalanced simulations due to asymmetric fluid topologies.
The obtained speedup factor closely follows the ideal one and it
is possible to run simulations with a higher number of particles
than would fit on a single device. efficiency of the parallelization.

I. INTRODUCTION

The numerical simulation of fluid flows is an important topic
of research with applications in a number of fields, ranging
from mechanical engineering to astrophysics, from special
effects to civil protection.

A variety of computational fluid-dynamics (CFD) mod-
els are available, some specialized for specific phenomena
(shocks, thermal evolution, fluid/solid interaction, etc) or for
fluids with specific rheological characteristics (gasses, water,
mud, oil, petrol, lava, etc). The Smoothed Particle Hydro-
dynamics (SPH) model, initial developed by Ginghold and
Monaghan [1] and Lucy [2], has seen a growing interest in
recent years, thanks to its flexibility and the possibility of
application to a wide variety of problems.

The flexibility of SPH comes at the cost of higher compu-
tational costs compared to other methods (e.g. mesh methods
like finite differences or finite volumes). However, since it
exposes a high degree of parallelism, its implementation

on parallel high-performance computing (HPC) platforms is
conceptually straightforward, significantly reducing execution
times for simulations.

Among the many possible parallel HPC solutions, an ap-
proach that has emerged lately is the use of GPUs (Graphic
Processing Units), hardware initially developed for fast ren-
dering of dynamic three-dimensional scenes, as numerical
processor for computationally-intensive, highly parallel tasks.

Although initial attempts to exploit the computational power
of GPUs go back to the introduction of the first programmable
shaders in 2001, the break-through for GPGPU (General-
purpose Programming on GPU) was the introduction in 2007
of CUDA, a hardware and software architecture released by
NVIDIA with explicit support for computing on GPUs [3].

While typically running a lower clock rates, a single GPU
features a large number of compute units (for more recent
cards, in the order of thousands of cores per GPU) and much
higher memory bandwidth than what is found on standard
desktop or server motherboards.

Although serial execution does not gain much from GPU
execution, its large multi-core structure makes it the ideal
computing platform for algorithms that exhibit a high level
of parallelism on a fine data granularity, such as SPH. For
such problems, a well-tuned GPU implementation can easily
achieve two orders of magnitude in speed-up of standard
single-core CPU implementations.

The cost-effectiveness and the ease of utilization of modern
GPUs have led to a widespread usage of GPU computing
even outside the commercial and academic world, leading to
what some to claim to be the GPU Computing Era [4]. It
should be mentioned, however, that some have criticized the
enthusiasm for GPGPU as being ‘excessive’, showing that a
well-tuned CPU implementation, optimized for execution on
recent multi-core processors, often reduces the flaunted 100⇥
speedup reported by many works [5].
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We present an optimized, multi-GPU implementation of the
SPH method. Our work is based on the open-source GPUSPH
code, the first CUDA implementation of SPH, developed in
recent years by the Sezione di Catania of the Istituto Nazionale
di Geofisica e Vulcanologia (INGV-CT) in cooperation with
the Department of Mathematics and Computer Science of the
University of Catania and the Department of Civil Engineering
of the Johns Hopkins University [6].

We extend GPUSPH to allow the distribution of the compu-
tational workload across multiple GPUs connected to the same
host machine. The use of more than one GPU allows large
simulations to complete in shorter times, roughly proportional
to the number of devices used, as well as to simulate problems
that would be too large to fit on a single device.

The single-GPU SPH model is briefly introduced in sec-
tion III, followed by the new multi-GPUs version, with a
description of the strategies employed to cover the latency
of cross-device data transfer and to balance the computational
load across devices. Optimization of the implementation for
a single device are then discussed, followed by some results
illustrating the benefits of multiple device usage, including
very high-resolution SPH simulations.

II. RELATED WORK

The first GPU-assisted implementation of the SPH method
was developed by Amada [7], which off-loaded the force
computation to the GPU while the CPU was delegated with
tasks such as neighbor search. A pure GPU implementation
(with no computing assistance from the host CPU) was later
developed by Kolb and Cuntz [8] and Harada et al. [9].

The introduction of the CUDA architecture for NVIDIA
cards in 2007 allowed the computational power of modern
GPUs to be fully exploited without the limitations imposed by
having to go through the graphical engines. The first CUDA
implementation of the SPH method was developed by the
authors [6]. Inspired by the open-source Fortran SPHysics
code [10], it has been recently published as the open-source
project GPUSPH [11]. Another CUDA implementation of SPH
became open source in march 2012 [12]. The same authors
presented last year a multi-GPU version [13], at the moment
not open source and without load balancing.

GPUSPH itself has found a number of applications ranging
from coastal engineering [14]–[16] to lava flow simulation, for
which a specialized version with support for non-Newtonian
viscous fluids and temperature-dependent parameters has been
developed [17]–[19].

III. SINGLE-GPU SPH

We now present an overview of GPUSPH. The overall
structure of the single-GPU implementation is essential to
understand the challenges posed by the multi-GPU implemen-
tation presented later. A number of improvements over the
original implementation described in [6] are also discussed
here.

Fig. 1. If cells have side equal to the influence radius, neighbors of the green
particle must reside inside in the immediate neighbor cells (light blue).

A. Kernels

The organization of the SPH method in CUDA kernels
directly reflects the computing phases of the SPH model:

1) BuildNeibs - For each particle, build the list of
neighbors;

2) Forces - For each particle, compute the interaction
with neighbors;

3) MinimumScan - Select the minimum dt among the
maxima provided by each particle;

4) Euler - For each particle, update the scalar properties
integrating over selected dt.

The kernel for force computation(Forces) and the kernel
for integration (Euler) are actually run twice because of the
two-step integrator scheme. All kernels have been written from
scratch, except for the particle sorting during the neighbor
search phase and the minimum scan, for which standard
libraries provided by NVIDIA are used.

B. Fast neighbor search

As with most implementations of the SPH method, a
neighbor list is constructed and maintained through several
iterations of the simulation, to speed up the neighbor search in
phases such as force computation or other optional corrections.

To speed up the construction of the neighbor list itself, the
computational domain is partitioned with a regular grid with
cell size equal to the SPH influence radius (i.e. kernel radius
time smoothing length); an example of such a construction in
two dimensions is shown in fig. 1.

The particles are then indexed by the cell they fall in
and sorted according to their cell index. This allows the
construction of the neighbor list for each particle to be built
by only looking at the particles in the 27 cells (in three
dimensions) closest to the particle location.

The auxiliary grid for the neighbor list construction is not
used during computation but, as we will discuss in section IV,
it is also of assistance in the domain partitioning for the multi-
GPU implementation.

Sorting the particles and building the neighbor list still
accounts for about 50% of the computational time for a single
integration step. Hence, the neighbor list is only updated every
k iteration, with k being a parameter that can be set by the
user, with a default of k = 10. This reduces the time spent
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in the neighbor list construction to about 10% of the total
computational time for a simulation.

IV. FROM SINGLE- TO MULTI- GPU
Exploiting a second level of parallelism required some

structural changes to the single-GPU GPUSPH code. The CPU
code needed a complete re-engineering, while the GPU kernels
underwent only minor changes. Some minor features were
temporarily disabled for testing purposes, such as periodic
boundaries, and will be enabled again soon. Here follows an
overview of the challenges we had to overcome on the model
side and on the technical side.

A. Splitting the problem
The key idea for exploiting multiple GPUs for the same

simulation is that the total computational burden must be fairly
split among the devices. The way the problem is split and
the path the data has to follow depends on the nature of the
problem. There could be no unique optimal solution for a
problem, as different splits may perform differently according
to the characteristics of a specific problem instance.

SPH is a purely parallel method except for the fact that
every particle needs to interact with its neighbors. This locality
constraint, together with the need to search for a globally
minimum timestep, required a special consideration when
designing the multi-GPU version of the simulator.

There are different ways to split a SPH simulation across
multiple GPUs. A first possibility could be to split the problem
in the domain of the computations: we could assign each
phase of the computation to a different device, thus arranging
a pipeline. This method, however, still needs the entire set
of particles to be transferred at every iteration across all
the devices, and does not scale easily as the number of
devices increases. Another possibility comes naturally from
the fact that particles are arranged in a list. The list enumerates
the particles regardless of their spatial position: list locality
does not correspond to spatial proximity. We could think of
splitting the list in subsets and assign each subset to a different
device; unfortunately, this is not feasible because we have no
guarantee that the neighbors of a particle reside on the same
device and accessing single particles in separate devices is very
costly. Although SPH is a meshless method, we have seen in
section III-B that particles are sorted and indexed by means of
a grid of virtual cells of the same size of the influence radius
to speedup the neighbor search. We can exploit this ordering
to split the fluid on a spatial basis and handle a minimum
overlapping of subdomains needed by the locality requirement.
This is actually an extension of the previously described list-
split that takes into account a pre-existent order constraint. We
choose the spatial split because of its simplicity, scalability and
robustness.

B. Split planes
While a spatial split in theory could operate on any three-

dimensional plane, we focus on the cartesian ones (the planes
orthogonal with the cartesian axes), as the split is based on

the cubic cells used for fast neighbor search. Although it
could be technically possible to split along different planes
simultaneously, the transfer of the edge of a subdomain could
be very expensive. Fig. 2 illustrates the problem in a simple
two-dimensional case. Assuming that the domain is linearized
in a row-first fashion, it is possible to transfer every green
edge by requesting a single memory operation, while the red
edges require many small transactions. As a general rule, it
is recommended that all the split planes are aligned to the
most significant axis used for the linearization. Thus, we chose
not to allow splits along different planes within the same
simulation: the 3D domain is split in slices all parallel with
each other.









 

 

Fig. 2. Splitting a 2D domain along the same axis or along orthogonal axes.
Assuming the data are linearized per row, it is possible to copy each of the
green edges in one memory transfer, while the red edges require many small
transactions.

It is still possible to choose a different split plane for each
simulation at compile time. This is implemented by defining
three different compiler macros and letting the programmer
choose the most appropriate one for the given problem; the
way cells are enumerated and 3D grid is linearized changes
accordingly. As a rule of thumb, one should choose the split
that minimizes the number of particles per slices (i.e. the
sections of the fluid being cut). For most problems the choice
has no big consequences as the time required for transferring
an overlapping slice, whichever the plane, is completely cov-
ered by the force computation, as will be shown later. Very
asymmetric topologies, however, may benefit from a proper
cut when load balancing, as the balancing granularity is at the
slice level and the balancing operations are not covered (see
section IV-G).

C. Subdomain overlap

Many particles residing near the edge of a subdomain have
neighbors in the edging devices. To access all their neighbors
without generating too many small memory transfers, each
device needs a copy of the first slice of neighboring devices
as read-only information for the interaction with neighbors,
and sends its edging slices as read-only copy to neighboring
devices. Recalling that the split is done by means of the grid
of virtual cells, and that cells have size equal to the influence
radius, the total overlap between neighboring subdomains is
exactly wide as twice as the influence radius.
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We refer to the assigned read/write particles as internal ones
and to the read-only particles as external. When referring to
slices, internal and external usually implies edging (i.e. first
or last slice of the device subdomain).

Fig. 3. Fluid volume with virtual cells, split on YZ plane. The blue line
shows the internal cells of GPU n.1; light blue the external read-only slice
updated by GPU n.2; internal cells of GPU n.2 are green, while the external
slice is light green. Particles are colored by velocity and cells are not in scale
for visualization purposes.

Figure 3 represents one possible split of a simulation
domain. The subdomains assigned to two devices and their
overlaps are highlighted. The position of the particles is taken
from an actual simulation and particles are colored by velocity.
The blue spot in device n.2 is due to the impact with an
obstacle not drawn for visualization purposes. Fig. 4 represents
the same subdivision from the viewpoint of the list of particles.

 

   

 
 

Fig. 4. Representation of the the list split technique. Once particles are sorted
by cells and 3D cells are linearized, it is possible to split the 3D domain by
splitting the list of particles in specific addresses where 3D slices begin.

D. Kernels

We now discuss about the kernels and what changes were
necessary to pass from one GPU to multiple GPUs.

Working on a subset of the global domain is trivial for step
1 (neighbor search) and 4 (integration) of the model, but we
have to be careful only in running them on the appropriate
particles subset. In particular, the neighbor search reads all
internal and external particles but produces the neighbor list
of internal particles only. The integration, instead, is run on
all particles, as the external ones are exchanged as forces,
as later explained, and new positions have to be computed.
Because we run the integration also on the external particles,
in the whole multi-GPU simulation the overlapping slices are

integrated twice. Fortunately, this overhead is really narrow,
as the integration step barely saturates the GPUs.

Step 3 (minimum scan) is straightforwardly extended to n
GPUs: each device finds its local minimum and sends it to
the CPU, which quickly compares the few local minima and
finds the global one. A CPU and GPU barrier waits for all the
local minima to be ready. Step 2 requires a further remark. The
neighbors of the external particles may not be available, as the
next 3D slice reside on a different device. Therefore, any force
computed on an external particle would be partial and should
not contribute to the computation of the final dt. We therefore
run the force computation kernel only on the internal particles;
external ones are accessed only as neighbors of internal ones.

E. Hiding slice transfers

Each device needs an updated copy of the neighboring
slices at each iteration. More specifically, we need updated
positions and velocities of particles in neighboring slices each
time forces are computed and integrated; due to the predictor-
corrector integration scheme, this update has to be done twice
for every iteration. This introduces a conspicuous overhead.
The contribute to the whole simulation time greatly varies
according to the density and topology of the simulated fluid. In
some cases it can even make a multi-GPU simulation perform
worse than a single-GPU one.

To overcome this problem we exploit the hardware capa-
bility of performing concurrent computations and data trans-
fers, treasuring the experience we maturated with a different,
Cellular-Automaton based simulator [20]. We use the asyn-
chronous API offered by the CUDA platform to begin the
transfers as soon as the edging slices are ready, while the
other ones are still being computed.

We initialize three CUDA streams for each device; we will
use two of them to enqueue operations about the edging
borders and one for the remaining slices. Except for the first
and the last device, which only have one neighboring device
and thus one edging slice, all devices have two edging slices.
We will describe the behavior of a device with two neighbors,
as the devices with only one neighbor are just a simpler case.
A first, simple design would be to issue first a Forces kernel
on edging slices; download the edges as soon as they are ready,
while computing the forces on the remaining slices; run the
MinimumScan; run Euler kernel on the non-edging slices
while uploading the updated external edges; finally, integrate
also the edging slices as soon as the uploads are complete.

Another possibility could be to exchange the forces of
the overlapping slices instead of the integrated positions and
velocities. This would have two major advantages:

1) We can start uploading the external slices while the
forces on the non-edging slices are still being computed;
because the Forces kernel takes longer than Euler,
transfers are more likely to be completely hidden.

2) We need to transfer less data (forces instead of positions
and velocities). This is true unless we need additional
structures, such as ⌧ coefficients for SPS correction [21].
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As already mentioned, this comes at the small price of
running the integration kernel also on external particles. We
chose the latter approach, that is represented in fig. 5. The
minimum scan and the integration are not encapsulated in the
method anymore, as all asynchronous transfers finish before
the Forces kernel does.











  






Fig. 5. Final design of kernel_forces_async method. Note that the
forces are exchanged instead of the positions; as a consequence, Euler kernel
must be run also on external particles.

Fig. 6 shows the actual sequence of events as profiled during
the simulation of a DamBreak3D with 1 million particles on
3 GPUs. The exchange of slices (purple) is actually performed
concurrently with computation of forces, and effectively starts
as soon as the computation of forces on edges is completed.
While the rectangles plot the start time and duration of the
events on the device, the little dots above them mark the
timestamps of the same operations as issued on the host.
All operations are asynchronous to the host except for the
download of the dt, which is blocking for the time represented
by the long brown line. We produced fig. 6 with a custom
profiler-visualizer we developed ad hoc to overcome the limits
of the standard profilers provided with CUDA 3.2 and CUDA
4.0.
















 



Fig. 6. Actual timeline of a multi-GPU GPUSPH simulation, with kernel
lengths in scale (lengths smaller than 1 pixel have been rounded up). Only one
GPU with 2 neighboring devices is shown. The little dots mark the moment
operations were issued on the CPU. Downloading the dt is blocking for the
CPU (from which, the long brown line) until the minimum scan is complete.

F. Simulator design

We encapsulate all pointers and CUDA calls needed to
handle a GPU into the class GPUThread (not to be con-
fused with the homonymous GPU instances of a kernel).
The main thread allocates one GPUThread per device and
each GPUThread starts a dedicated pthread in constant
communication with the associated device. The main thread
tracks the simulation time and periodically requests a sub-
domain dump from the GPUs according to a user-defined
save frequency. We synchronize the threads through a GPU

flush (cudaThreadSynchronize) and a signal/wait CPU
barrier based on the NPTL implementation of POSIX threads.

It is possible to specify at command line several simulation
options and it is possible to run a simulation on a hetero-
geneous set of devices, even belonging to different hardware
generations. The data is not multi-GPU aware: it is possible
to save the state of a single-GPU simulation and to restore it
in a multi-GPU environment, and vice-versa.

G. Load balancing

In the ideal case of all the GPUs taking the same amount
of time to complete each step, the simulation time is expected
to speedup in a quasi-linear way (with the only exception of
negligible constant factors such as the kernel launch latency).
In general, this is difficult to guarantee, and the overall
performance loss will be proportional to the performance of
the worst performing device. A device taking n% more time
than the average to perform all the operations between two
synchronization barriers will worsen the whole simulation time
by exactly n%.

Dividing the fluid in parts of the same size (i.e. same
number of particles) does not always lead to the optimal
workload balance. Indeed, many unpredictable elements may
influence the total computation time, such as the sparsity of
neighbor particles since last sort, the fluid topology, branch
divergences inside a kernel and even hardware factors such
as PCI interrupts and bus congestion. No balancing model
can take all these factors into account without relying on
the execution time of the previous steps. It is advisable to
implement an a posteriori load balancing technique.

The key idea is simple: we keep track of the time required
by each GPUs for the Forces kernel and we ask the
GPUs taking longer than the average to give a slice of their
subdomain to GPUs taking less.

More in detail, we consider the average time Ag taken by
a single GPU g to complete the forces kernel on the central
set of particles over the last k iterations. A smart choice of k
could be a multiple of the number of iterations between two
reconstructions of the neighbor list, to minimize the number
of sorts; in our case, k = 10. We then compute the cross-GPU
average

AG =
DX

d=1

Ad/D

and A�g = Ag �AG.
If |A�g| � TLB , with TLB as balancing threshold, we mark

the GPU g as giving (if A�g > 0) or taking (if A�g < 0). A
giving GPU “sends” one slice to the taking one; if they are
not neighboring, every intermediate GPU gives one slices and
receives another at the appropriate edge. Ag is then reset to
wait for next k iterations.

The threshold TLB must be big enough to avoid sending
slices back and forth and small enough to trigger the balancing
when needed. Let Tslice the average time required to compute
the Forces kernel on a single slice; because the granularity
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is at the slice level, it convenient to set TLB proportionally to
Tslice:

TLB = HLB · Tslice

with HLB as balancing threshold coefficient. In our tests
HLB = 0.5 performed quite well in the general case. A
manual fine-tuning in specific simulations may lead to slightly
better results, although in our tests fine-tuning HLB only
resulted in negligible performance improvements (the order
of tens of seconds with respect to one hour of simulation).

Figure 7 shows different snapshots of a BoreInABox
simulation with about 1.1 million particles. Each particle is
colored according to the device it belongs to, so that the
dynamics of balancing are highlighted.

t = 0.0s t = 0.16s t = 0.32s

t = 0.48s t = 0.8s t = 2.0s
Fig. 7. Snapshots of different phases of the BoreInABox problem
simulation, corridor variant, on 6 GPUs. Each particle is colored according
to the device number it belongs to.

V. RESULTS

A. Performance metrics

As we often simulate problems exhibiting different densi-
ties, topologies and number of particles, the absolute execution
time required by a simulation to complete is too simple a
performance metric for our purposes.

We propose to measure the amount of work done within
a simulation as the number of fulfilled iterations times the
number of particles. This can be considered as the number
of single iterations completed (imagining, for example, a
hypothetical single-core GPU). To abstract from the simulation
length we can simply divide by the real time. We chose
seconds as time units and, as the number of particles often
exceeds the million, we found useful to consider thousands
of them. We are thus measuring thousands of iterations on
particles per second; in short form, we call this unit kip/s or
simply kips. Another advantage of this metric compared to the

1 2 3 4 5 6
DamBreak3D
LB off 9, 977 19, 149 27, 802 35, 213 39, 784 45, 599
LB on - 19, 380 27, 191 35, 336 42, 578 49, 491
Ideal - 19, 955 29, 932 39, 910 49, 887 59, 865

BoreInABox
LB off 8, 770 12, 713 16, 275 20, 649 25, 657 29, 418
LB on - 16, 940 24, 115 30, 548 36, 800 41, 745
Ideal - 17, 541 26, 311 35, 082 43, 852 52, 623

TABLE I
KIP/S, WITHOUT AND WITH LOAD BALANCING (LB), DAMBREAK3D AND

BOREINABOX , 1.6 MILLION PARTICLES.

mere speedup is that it is possible to compute the instantaneous
speed at runtime, with no need to wait for a simulation to
complete. This metric is specific for particle methods and may
not be suitable for other models.

It is worth recalling that for any comparison to be accurate
the same integration scheme and physical settings must be
used. It is also advisable to simulate similar fluid topologies,
as different topologies can still affect memory coalescence and
thread/block scheduling.

B. Test platform
Our testing platform is a TYAN-FT72 rack mounting

6⇥GTX480 cards on as many 2nd generation PCI-Express
slots. The system is based on a dual-Xeon processor with 16
total cores (E5520 at 2.27GHz, 8MB cache) and 16GB RAM
in dual channel. Each GTX480 has 480 CUDA cores grouped
in 15 multiprocessors, 64kB shared memory/L1 cache per MP
and 1.5GB global memory with a measured datarate of about
3.5GB/s host-to-device and 2.5 GB/s device-to-host (with 5.7
GB/s HtD and 3.1 GB/s DtH peak speeds on pinned buffers).

In GPUSPH terminology, a problem is the definition of
a physical domain, fluid volumes and geometrical shapes (a
scene) to simulate. The reference scenario was a box with
0.43m3 of water divided into 1.6 million particles for 1.5s of
simulated time. An obstacle breaks the fluid in the first variant
(DamBreak3D); two walls change the flow path in other two
(BoreInABox “wall” and “corridor” versions).

The operating system is Ubuntu 10.04 x86 64, gcc 4.4.3,
CUDA runtime 3.2 and NVIDIA video driver 285.05.09.

Videos of the reference simulation run on different number
of devices are available at http://www.dmi.unict.it/⇠rustico/
sphvideos.

C. Analysis
The load balancing policy and algorithm we implemented

is not perfect and, while it works reasonably well in practice,
may not converge to the optimal balance in some classes of
situations, remaining stuck in a local minima or in a “ping-
pong” slice exchange. This has to be considered as a first
attempt to overcome the technical difficulties arising from on-
the-fly subdomain resizing and needs further improvements.

The effectiveness of the implemented load balancing policy
has been tested by measuring the achieved performance dur-
ing the simulation of two problems, DamBreak3D and the
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BoreInABox, with about 1.6 million particles each, from 1
to 6 GPUs. Table I show the measured kips/s; charts 8 and 9
plot the execution times for visual comparison.

1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs

0

1000

2000

3000

4000

5000

6000

7000

Time (s)

LB time (s)

Ideal time (s)

Fig. 8. Multi-GPU GPUSPH execution times for a simulation with 1.6
million particles, DamBreak3D problem, 1-6 GPUs.

1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs

0

1000

2000

3000

4000

5000

6000
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8000

9000

Time (s)

LB time (s)

Ideal time (s)

Fig. 9. Multi-GPU GPUSPH execution times for a simulation with 1.6
million particles, BoreInABox problem, 1-6 GPUs.

The DamBreak3D problems presents a high level of sym-
metry, especially when splitting the problem along the Y axis.
The number of particles assigned to each GPU is roughly
constant during the whole simulated time (1.5s) and the load
balancing is not expected to make a big change. Simulating
over 2 and 4 GPUs lead to an advantage of roughly 1% total
simulation time; on 5 and 6 GPUs simulations run between
6% and 13% faster than without any balancing. Nevertheless,
simulating on 3 GPUs with load balancing activated takes
surprisingly about 1% longer. This is a consequence of the
domain shape and distribution of particles. With 3 GPUs, two
of them are assigned to lateral stripes (thus, have a higher
percent of static particle-border interactions) while the central
one deals with the obstacle. The naturally balanced particle
distribution highlights the little overhead of balancing attempts
(112 slices moved over about 35k iterations), without any
performance gain.

When simulating an asymmetrical problem like
BoreInABox, however, load balancing makes a big
performance difference. During the 2.5s simulated time of
BoreInABox, the particles flow in the lateral corridor and
one third of the simulation domain, considering Y as split
axis, receives two thirds of the total fluid. In fig 9 it is possible

to see how load balancing keeps the performance close to
the ideal one, while without balancing the performance drops
(or, execution time jumps up). In such cases, load balancing
also allows for bigger simulations, as it is possible to reduce
the allocation margin factor Mf and save space for further
particles.

VI. FURTHER OPTIMIZATIONS

Aside from the development of a multi-GPU implementa-
tion, the single-GPU code was also improved by introducing a
number of optimizations tuned for the new hardware produced
by NVIDIA since the first version of GPUSPH.

A. Interleaved neighbor list

In the first version of GPUSPH, the neighbor list was
stored as a sequence of consecutive “buckets”, such that all
the neighbors of the first particles were stored consecutively,
followed by all the neighbors of the second particle, and
so on. This storage structure follows the standard approach
used on CPU, as well as the approach used in the first GPU
implementations, as it allows exploiting the texture caching
feature presents in most GPUs.

As an optimization, the structure was replaced with an
interleaved structure, grouping particles according to the block
size used for kernel launches. For each group of particles with
consecutive indices, the neighbor are stored by putting all the
first neighbors first, followed by all the second neighbors, and
so on. The neighbors of a single particle are thus stored with
a stride s, which is also chosen to be a multiple of 32 (the
hardware warp size) to improve memory alignment.

The strided neighbor list and the improved alignment ensure
that neighbor list access are properly coalesced, a feature of
GPU computing that significantly reduce memory latency by
allowing the data of multiple particles to be loaded in a single
memory transaction.

B. Fermi L1 cache

While older cards only offered caching through the use of
a special hardware function called textures, newer GPUs from
NVIDIA, code-named Fermi, also feature an L1 cache that
can further improve memory access times to the main GPU
memory (global memory).

While all arrays were accessed as textures in the original
version of GPUSPH, we now optimize memory access on
Fermi cards by keeping all linear-access arrays in global mem-
ory, and distributing random-access arrays between texture and
global memory. The calibration of the arrays to put in texture
versus global memory was done by trial and error to find the
optimal combination.

C. Block size

The block size in CUDA represents the number of particles
that are concurrently processed by a single multiprocessor of
the device. In the original version of GPUSPH, the block size
for force computation was limited to 64, with larger block

280



7th international SPHERIC workshop Prato, Italy, May 29-31, 2012

sizes offering no benefits due to the kernel runtimes being
limited by memory accesses.

The optimization described in sections VI-A and VI-B
greatly improved memory access, allowing us to raise the
block size to 128 for force computations.

D. Performance gain

The optimizations described in this section led to an imple-
mentation measured to be 2 to 3 times faster than the original
GPUSPH code.

For example, in a DamBreak simulation with one million
particles the neighbor list construction drops from about 52ms
to about 34ms, while force computation exhibits a much higher
improvement, from 51ms to about 19ms. By comparing the
runtimes for 10 iterations (which include one buildNeibs
and 20 force computations) we get 1106ms before optimiza-
tion versus 446ms with optimizations, for an actual observed
speed-up of 2.5⇥.

This performance gain has been measured mainly on the
single-GPU implementation, but since the benefit indepen-
dently affects the performance of each device, it carries over
almost unchanged to the multi-GPU version.

VII. CONCLUSIONS AND FUTURE WORK

We presented a scalable multi-GPU implementation of
the CUDA-based GPUSPH fluid simulator. Simulations scale
almost linearly with the number of GPUs used. A dynamic
a posteriori load balancing policy neutralizes the effect of
asymmetries in the topology of the simulated fluid. Despite
the simplicity of the balancing policy, involving no signal-
processing or other advanced techniques, the system showed
an excellent performance in almost all the tests we performed.
A second aim of the multi-GPU implementation was also
achieved, that is to run simulations with more particles than
could fit in one device. Finally, we could almost halve the
execution time of the neighbor search step by interleaving the
lists of neighbors of different particles, leading to an improved
coalescence in memory accesses.

The present simulator runs on a single node featuring
multiple GPUs. The main improvement we are currently
working on regards the development of a multi-node version
of the simulator for GPU-based clusters. This also requires
a more complex domain decomposition strategy and a more
sophisticated load balancing policy, with an accurate temporal
analysis and a possibly finer granularity.
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B. D. Rogers, “Gpus, a new tool of acceleration in cfd: Efficiency
and reliability on smoothed particle hydrodynamics methods,” PLoS
ONE, vol. 6, no. 6, p. e20685, 06 2011. [Online]. Available:
http://dx.doi.org/10.1371%2Fjournal.pone.0020685

[13] A. C. D. Valdez-Balderas, JM Dominguez and B. Rogers, “Develoing
massively parallel SPH simulations on multi-GPU cluster,” in Proc. 6th
International SPHERIC Workshop, Hamburg, June 2011, pp. 340–347.
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[18] A. Hérault, G. Bilotta, C. Del Negro, G. Russo, and A. Vicari, SPH
modeling of lava flows with GPU implementation, ser. World Scientific
Series on Nonlinear Science, Series B. World Scientific Publishing
Company, 2010, vol. 15, pp. 183–188.
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