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Abstract—The nature of wave breaking at beaches and the 
subsequent three-dimensional turbulence under the waves are 
of great interest in coastal engineering. The breaking waves 
were modelled on a slope using the 3-D open-source GPUSPH 
code of Hérault, Bilotta and Dalrymple (2010). Then, different 
coherent structure detection methods were employed, 
including vorticity, ! criterion, and !! criterion. These last 
two criteria are based on the velocity gradient tensor and its 
symmetric and anti-symmetric components. The evolution of 
the turbulence under a plunging wave is discussed. For 
plunging waves, the plunger touch-down, the jet penetration, 
and subsequent splash-up are all sources of vorticity. 
 

I. INTRODUTION 
The characteristics of wave breaking in the surf zone has 

been of great interest for coastal engineers and fluid 
dynamicists.  As ocean waves propagate towards shore they 
undergo shoaling, shortening in length and increasing in 
height.   As the waves enter the diminishing water depths 
close to the beach, waves break, leading to splash-up, and 
white water fronts or spray depending on the nature of the 
waves. There are four different generic breaker types: 
spilling, plunging, collapsing and surging waves, depending 
on the initial steepness of the waves and the steepness of the 
beach slope [1].  

• In spilling waves, when the wave crest becomes 
unstable, it spills forward and creates white water in 
front of the wave and the wave energy is dissipated in 
this turbulent white water. Spilling waves usually occur 
on gradual beach slopes. 

• In plunging waves, the crest of the wave becomes very 
steep--almost vertical, then it overturns as a jet and falls 
into the water in front of the wave, followed by a 
splash-up, which is sometimes higher than the original 
wave. Depending on the position of the first plunging 
point, a sequence of plunging and overturning jets 
appear in front of the initial wave. This splash-up cycle 
produces vortex structures propagating towards the 
shore. 

• In collapsing waves, the lower part of the wave gets 
steeper and curls over, following by bubbles and foam. 

• For surging waves, which appear on very steep 
beaches, the lower part of the wave moves rapidly 
forward and the wave crest does not curl over. There is 
no turbulent breaking process. 

Several laboratory and numerical studies demonstrated 
that the turbulent flow under the breaking wave could be 
characterized by large-scale flow structures, which are 
called coherent structures. Nadaoka, Hino and Koyano [2] 
performed a set of laboratory experiments to examine the 
breaking wave dynamics and the generated turbulence 
structure. They studied the three-dimensional eddies found 
under and behind the wave crest, called obliquely 
descending eddies. Ting [3] studied a solitary wave 
experimentally and captured coherent structures under the 
breaking wave, which were the sources of turbulent energy. 
Watanabe, Saeki and Hosking [4] modelled the large-scale 
vortex structures under spilling and plunging waves using 
large eddy simulation (LES) method. Three dimensional 
vortex structures were captured in both plunging and 
spilling waves. They studied the obliquely descending 
eddies, which have an important role in sediment 
transportation and beach erosion. 

     In this study, generation and evolution of Lagrangian 
three-dimensional coherent structures under the plunging 
water waves are numerically modelled using SPH 
(Monaghan, 1994), specifically the GPUSPH model 
developed by Hérault, Bilotta and Dalrymple (2010) [5], [6]. 
The Navier-Stokes equations are numerically solved using a 
turbulence closure model to consider small-scale eddies as 
well. 

II. COHERENT STRUCTURES 
In this section, we briefly outline some definitions 

related to the vortex and coherent structures in fluid 
mechanics. Study of spatially coherent, time-depending 
vortex structures has an important role on the understanding 
of turbulent flow physics. Several researchers have 

171



7th international SPHERIC workshop Prato, Italy, May 29-31, 2012 

 
 

proposed different definitions of “vortex”. Brachet, 
Meneguzzi, Politano and Sulem (1988) defined a vortex as a 
region of negative velocity gradient determinant [7]. 
Babiano, Basdevant, Legras and Sadourny (1987) defined a 
vortex any region of a fluid with vorticity magnitude greater 
than a specific threshold [8]. McWilliams (1990) proposed a 
quantitative definition and recognized a vortex as a fluid 
region that is bounded by vorticity magnitude equal to 20% 
of the local extremum of vorticity magnitude [9]. Green [10] 
defined a fluid vortex as any region of concentrated 
vorticity. Although this definition has some ambiguities, it 
has been used in a wide variety of studies.  

A vortex line is a line that is everywhere tangent to the 
local vorticity vector. This definition is analogous to the 
streamline, which is a line that is tangent to the local 
velocity vector. A vortex tube is the set of all vortex lines 
passing through a specific closed surface. Coherent 
structures are vortex structures that separate the fluid field to 
distinct regions, which are rotating relative to each other and 
can be of any shape. Robinson (1991) defined vortical 
structures as regions of flow with low pressure. In a rotating 
motion, pressure tends to have a local minimum on the axis 
of rotation since the centrifugal force needs to be balanced 
by pressure. This definition may not capture all vortical 
regions of the flow since a single pressure threshold can not 
reveal all spanwise and streamwise vortical structures. The 
vorticity magnitude can be used to detect vortex cores but it 
has been proved to misdetect vortical structures in some 
fluid flows. For instant, in some wall-bounded flows, the 
maximum of vorticity magnitude occurs at the wall, 
although there is no rotating motion close to the wall [11].  

Hunt, Wray and Moin (1988) [12] proposed a vortex 
criteria using velocity gradient decomposition to symmetric 
and antisymmetric components as in equation (1). 

∇! = ! + Ω                                                                           (1)   

where !!is rate of strain tensor and Ω is the rotation tensor. 

These two tensors are calculated as: 

! = !
! [∇! + ∇! !]                                                         (2) 

Ω = !
! ∇! − ∇! ! !                                                  (3) 

According to their definition, a vortex structure is a spatial 
region where the following criteria, which is called ! 
criteria, is satisfied: 

! = !
! Ω ! − S ! > 0                                                 (4) 

Jeong and Hussain (1995) [11] defined a vortex core as a 
flow region with following two conditions:  

(1) A vortex core must have a net circulation and 
vorticity.  

(2) A vortex core should have a Galilean invariant 
geometry. 

In order to meet the previous conditions, they proposed a 
new definition based on the eigenvalues of !! + Ω!. The 
main concept came from the fact that minimum of pressure 
occurs on the axis of rotation but this definition is not 
sufficient as a detection criterion. For instance unsteady 
irrotational straining creates a pressure minimum although 
no vortex exist. Therefore they removed the unsteady effects 
and proposed that vortex structures are connected regions 
where the median eigenvalue of !! + Ω! is negative: 

!! ≥ !! ≥ !!                                                                    (5) 

!! < 0                                                                                 (6) 

!! + Ω! is a real symmetric tensor so it has only real 
eigenvalues. By definition the negative median eigenvalue 
of this tensor demonstrates the vortex structures. 

III. NUMERICAL MODELING OF PLUNGING 
WATER WAVE 

A. Numerical model 
Modeling breaking water waves with SPH was begun 

by Monaghan [5] in 1994. Dalrymple and Rogers [14] 
examined 3D breaking waves in the surf zone, showing that 
the breaking wave is the source of considerable vorticity.   

 
Here a plunging water wave was numerically modelled 

using GPUSPH [6] model, which is an open-source SPH 
code available from www.ce.jhu/dalrymple/GPUSPH. In 
this code, the CUDA programming language is used to 
implement SPH calculations on the Graphic Processing 
Units (GPUs) of computers instead of Central Processing 
Units (CPUs). SPH has a data parallel nature and it 
performs very well on GPUs, which have a parallel 
architecture. 

The governing equations are the Navier-Stokes equation 
that is written as follows:  

1
!
D!
Dt

+!.!u = 0                                                        (7) 

D!u
Dt

=
1
!
!P + 1

!
!.
!
T + "g                                       (8) 

where ! = fluid particle density; ! = particle density; ! = 
fluid particle pressure; ! = viscous stress tensor and ! = 
gravity vector. 

A weakly compressible SPH formulation is rendered in 
particle form for use in GPUSPH and particle pressure is 
calculated from the equation of state [5], [6]. Different 
boundary conditions are applied in this model: (1) Lennard-
Jones forces between boundary particles and fluid particles, 
which prevent the fluid particles from penetrating into 
boundary particles and (2) Monaghan and Kajtar (2009) 
boundary condition where a new form of radial boundary 
forces are introduced [13]. 

In order to capture eddies and vortex structure under the 
plunging wave, a combination of SPH method and Large 
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Ball 

Eddy Simulation (LES) called sub-particle scale (SPS) is 
used [14]. A LES filtering is applied to Navier-Stokes 
equations to calculate large-scale eddies. Small-scale eddies 
are modelled using a Sub-Grid-Scale (SGS) turbulence 
model. The standard Smagorinsky model (1963) is used to 
model the small-scale eddies and the Smagorinsky 
coefficient is assumed to be constant over time and over 
space [14]. 

B. Plunging wave characteristics 
A plunging wave is generated with a flap wave maker 

and propagates towards a beach with a slope of 1 to 5.6 
(vertical to horizontal). The wave simulation is performed in 
a wave tank of 5.5m long, 2m wide and 3m high. The 
bottom of the tank has a 1m horizontal section and a 4.5m 
slope length. The water height in the horizontal part of the 
tank is equal to 0.65m. The plunging wave has a wave 
height of 0.45m and a wave period of 1s. Particle spacing in 
SPH simulation is set to be equal to 0.01m and about 4.5 
million particles are used. Our numerical model simulated a 
five wave sequence, starting from still water in the tank. A 
schematic sketch of the wave tank used in the numerical 
model is given in figure (1). In order to apply boundary 
conditions, Lennard-Jones forces are used for boundary 
particles and a Shepard filtering is applied every 20 time 
steps in order to smooth the particles’ density. A floating 
ball is situated near the wavemaker at the middle of the tank 
in y direction in order to illustrate the interaction between a 
plunging breaking wave and a floating body and its effect 
on the coherent structures under the breaking wave. 

 

 
Figure 1. Schematic side view of the wave tank, showing the wavemaker 

and the floating ball at the water surface. 

C. Post-processing calculations 
The plunging wave is modelled by GPUSPH code [6] 

and velocity, vorticity and other physical parameters are 
calculated for moving particles in each time step using 
Navier-Stokes equations. In order to study the coherent 
turbulent structures under the breaking wave, the physical 
parameters of moving particles need to be mapped on fixed 
spatial nodes. To achieve this goal, fluid velocity on the 
nodes are calculated using original SPH integration 
formula, which is applied over the fluid parameters of 
nodes’ neighbouring moving particles: 
      Ap =

p
! mp

Ap

!p

W ( rn " rp ,h)                                           (9) 

where notation "!" corresponds to the fixed nodes, notation 
"!" corresponds to the moving particle and "!" can be any 
fluid parameter such as velocity, pressure or density. The 
fixed nodes do not contribute in the process of force 
calculation and they are using the existing neighbour list of 
particles. Therefore they do not have a significant impact 
on the computational expenses. Figure (2) presents a 
schematic of computational domain and the relation 
between moving particles and fixed nodes. 
 

 
Figure 2. Schematic computational domain and the position of fixed nodes 
and moving particles 

When velocity on each fixed node is calculated, velocity 
gradient tensor and its symmetric and antisymmetric 
components are computed. Then ! and !! values are found 
according to the equations mentioned in the previous 
section. In order to find the coherent structures, we looked 
at isosurfaces of positive ! and negative !! 

IV. NUMERICAL RESULTS OF COHERENT 
VORTEX FORMATION 

In this section, the formation of the three-dimensional 
large-scale coherent structures under a plunging wave is 
investigated. The water wave motion is two-dimensional at 
the time of generation as the paddle is two-dimensional, but 
at breaking, when an overturning jet meets the water surface 
at the toe of the wave, the fluid motion becomes three-
dimensional and involves various rotations along different 
axes. When the plunging wave curls over and hits the water, 
splash-up happens, which leads to another jet that jumps 
forward and creates another splash-up and this sequence 
continues with gradually decreasing scale. Formation of 
plunging jets and splash-ups one after another is called 
splash-up cycle and its length depends on the position of the 
first jet on the beach. Creation of coherent structures 
depends on the mode of the splash-up. 

As the wave breaks, the plunging jet penetrates into the 
water surface as vertical counter-rotating eddies and the tip 
of the jet shapes a finger-shape surface shape. Then a 
horizontal roller as a spanwise rotational vortex structure is 
created, which moves along the wave direction. In order to 
capture the coherent structures related to a plunging wave, 
we considered a cubic window that covers the plunging 
wave flow and this window moves with the wave speed. 
Coherent structures are computed in this window. Figure 
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(3) shows the surface deformation for the first breaking 
event where the first jet is meeting the front water and the 
surf zone is still undisturbed. !! is referred to the time when 
the first plunging wave meets the water surface ahead. 
Isosurfaces of negative λ! corresponding to the coherent 
structures exactly under the broken wave are illustrated in 
this picture. The coherent structure that covers the 
overturning jet has an irregular spanwise tube shape with 
several vertical finger-shape parts at the tow of the jet. This 
horizontal roller, which is rotating along the wave 
direction, will be developed to a regular tube when it 
reaches the surf zone. Figure (4) presents the vorticity 
magnitude and vorticity vectors on SPH particles. The 
vorticity vectors are mostly dominated at the point where 

the jet tip meets the water surface and illustrate a rotation 
along y direction. Some vorticity vectors are captured 
around the floating ball, which is being carried along the 
wave crest. The sequence of plunging jets and splash-ups is 
presented in figure (5).  When the first jet curls over and 
falls into the water, then the downward high momentum 
caused by the jet push the water region in front of it 
forward and forms a splash-up which flows ahead as a 
secondary jet. The secondary jet, which is smaller in scale 
in comparison to the primary jet, also curls over and 
penetrates into the water and is followed by a splash-up.  
Both first and second jets cause vertical structures under 
their toe. Figure (6) presents an x-view of coherent 
structures under overturning jets. 

  

 
Figure 3. Wave shape and isosurfaces of !! = −!.! at ! = !! .  Note:  Ball is overtopped by wave at the center of the wave crest. 

 

 
Figure 4. Particle vorticity magnitude and vorticity vectors in red at ! = !! Note:  Ball is overtopped by wave at the center of the wave crest. 

  

 

Computed Region for λ!  

Finger-shape structures 
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Figure 5. Side view of sequence of plunging jets and splash-up and isosurfaces of  !! = −!.! at ! = !! + !

!"! .  Note the floating ball located outside of the 
vortex structure. 

 

 

 

 
Figure 6 . x-normal view of vertical and spanwise coherent structures with isosurfaces of  of  !! = −!.! at ! = !! + !

!"!  

Computed Region for λ! 
Type%equation%here. 
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For the first jet, the vertical structures are connected to a 
spanwise roller, which is spread all over the width of the 
tank. This roller travels with the speed of the wave and in 

its direction. It has an irregular shape at the time of 
generation but after a while it develops to be a cylindrical 
tube.

 

 
Figure 7. Side view of sequence of plunging jets and splash-up and isosurfaces of  !! = −!.! at ! = !! + !

!"! 

 

 
Figure 8. z-normal slide view of coherent structures with isosurfaces of  !! = −!.! at ! = !! + !

!"!, showing the irregular nature of the coherent structures.

Computed Region for λ! 
Type%equation%here. 

Spanwise-roller generated 
from second jet 

Spanwise-roller generated 
from first jet 
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Figure 9 . Side view of sequence of plunging jets and splash-up and isosurfaces of  !! = −!.! at ! = !! + !"

!"! 

 

The second jet penetrates into the water and causes vertical 
vortex structures. The vertical structures generated from the 
second jet are also connected to each other in spanwise 
direction but instead of one unique horizontal structure 
along the width of the tank, several rollers appear at the 
secondary jet tow and after a while they connect to each 
other and create two distinct rollers. The vertical vortex 
structures seem to penetrate deeper around the floating 
body. Figure (7) shows the primary jet and secondary jet of 
first breaking event at time equal to !! + !

!"!. Two distinct 
spanwise rollers can be captured. In order to study the 
coherent structures more accurately, a slide has been made 
at the half of the water depth (z-normal), which is presented 
in figure (8).  The horizontal roller caused by the first jet is 
connected along the spanwise direction. The second jet 
causes another horizontal roller, which is disconnected at 
the half of the tank in spanwise direction. This 
disconnection may be related to the existence of the 
floating body in that position. The second jet also splash up 
and make another jet. The third jet penetrates into the water 
(figure (9)). This jet has a much smaller scale in 

comparison to the first jet and it makes some distinct 
vertical vortices. 

I. CONCLUSION 
The formation of three-dimensional coherent structures 

under a plunging wave has been investigated by the use of 
GPUSPH model (Hérault, Bilotta and Dalrymple, 2010). 
Study of coherent structures under breaking waves can 
reveal the mixing and sediment transport in a beach.  

To detect coherent structures, we applied λ! and!Q 
criteria, which are based on strain-rate and rotation 
components of velocity gradient tensor. To calculate these 
criteria, fluid parameters of moving particles are mapped 
onto fixed Eulerian nodes using SPH interpolation. Then 
velocity gradient tensor and corresponding !! and!! 
criteria are computed for each Eulerian node. Both !! 
and!! criteria detect relatively similar structures but !! 
criterion shows more clear patterns. When a plunging wave 
breaks, an overturning jet projects from the breaking wave 
crest and falls into the water surface ahead. When the jet 
enters the water, vertical counter-rotating vortices are 

Computed Region 
for λ! 
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generated and these finger-shape structures are connected 
to a horizontal spanwise roller, which is rolling in the wave 
direction. The turbulence is generated and intensifies 
between the primary jet and the secondary jet and 
transferred by the horizontal roller. The second jet also 

causes another spanwise roller. The third jet has a 
significantly less power from the previous jets and it causes 
some distinct structures. The cycle of plunging jets and 
splash-up gradually diminishes in scale as it approaches the 
beach.
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