
Compiling CUDA programs
Any program with CUDA programming should be named: xxxx.cu!
This file can contain both HOST and DEVICE code. !
!
The compiler is nvcc, which can handle both C++ and CUDA code. It is capable of
compiling all C++ commands for the HOST and most for the DEVICE.!
!
 nvcc xxxx.cu -> a.out!
!
 nvcc xxxx.cu -o xxxxx yields xxxxx as executable file!
!
!
Compute capability: newer cards have better capabilities!
!
nvcc -code=sm_30 xxxx.cu means compute_capability of 3.0!
nvcc -arch compute_30 xxxx,cu!
!
nvcc -m32 xxxx,cu means compile 32bit code, default is 64 bit (-m64)!
!

Threads
Consider a kernel call:!
!
kernel <<< num_Blocks, threads_per_block>>> (args…)!
!
!
mat_mult <<< 1, N>> (…)!
!
This means invoke kernel with 1 block of N threads. All of data fits within N. !
 N can be as big as 1024 on MBP!
!
mat_mult <<<N, 1 >>> (…) use N blocks of 1 thread.!
 N can be as large as 65,535 (or larger 231-1)!
!
!
!
!
 (Number of threads per block should be some multiple of 32)!

Kernel Calls
dim3 Grid,Block;!
!
// define Grid, Block Note unspecified dim3 field initializes to 1. !
..!
!
kernel <<< Grid, Block>>> (….)!
!
Grid: dimension and size of grid (of blocks)!
!
 In two-dimensions: x, y!
 Number of blocks: Grid.x * Grid.y !
!
Block: dimension and size of blocks of threads!
 In three-dimensions: x, y, z!
 Threads per block: Block.x * Block.y* Block.z!
!
!
!
!
!

Global/Device Automatic Variables

dim3 gridDim;!
 Dimension of the grid in blocks; GridDim.x, GridDim.y, GridDim.z!
!
dim3 blockDim;!
 Dimensions of the block in number of threads!
!
dim3 blockIdx;!
 Block index within grid (starting with 0)!
!
dim3 threadIdx;!
 Thread index within block!
!
!
Note: dim3 dimension not specified is initialized to 1

Threads on GPU
Threads are organized in blocks; blocks are grouped into a grid; and threads are
executed in kernel as a grid of blocks of threads; all computing the same function.!
!
Each block is a 3D array of threads defined by the dimensions: Dx, Dy, and Dz,!
 which you specify.!
!
Each CUDA card has a maximum number of threads in a block (512, 1024, or 2048).!
!
Each thread has a thread index, threadIdx: (x,y, z); !
 0≤ x < Dx, 0 ≤ y < Dy, 0 ≤ z < Dz, where Dx, Dy, Dz are the block dimensions;!
 Dx * Dy * Dz = max threads per block !
!
Each thread also has a thread id: threadId = x + y Dx + z Dx Dy !
The threadId is like 1D representation of an array in memory.!
!
If you are working with 1D vectors, then Dy and Dz could be zero. Then!
threadIdx is x, and threadId is x. Working with 2D arrays, then Dz would be zero.!
!
!

threadId in different kind of blocks

x + y Dx

x+y Dx + z Dx Dz
Max threads in block: 512 Fermi;1024 for Compute Capability 2

Thread Index (threadIdx) and ThreadId
In 1-D: For one block, the unique threadId of thread of index (x) = x!
 or threadIdx.x = x; Maximum size problem: 1024 threads !
!
In 2-D, with block of size (Dx, Dy), the unique threadId of !
 thread with index (x,y): threadId= x + y Dx!
!
 threadIdx.x = x; threadIdx.y = y!
!
In 3-D, with block of size (Dx,Dy, Dz), the unique threadID of!
 thread with index (x,y,z): threadId = x+y Dx + z Dx Dz!
!
 threadIdx.x = x; threadIdx.y = y; threadIdx.z = z!
!
!
Total number of threads = Thread_per_block* Number of blocks!
!
Max number of threads_per_block = 1024 for Cuda Capability 2.0 + !
Max dimensions of thread block (1024,1024, 64) but max threads 1024 !
 !
Typical sizes: (16, 16), (32, 32) optimum size will depend on program

Grids of Blocks
When you have more data than the maximum number of threads per block.
Handle additional threads with more blocks. !
!
A grid is a 1D (x), 2D (x,y) or 3D (x,y,z) array of blocks !
!
 (gridDim.x, gridDim.y, and gridDim.z)!
!
Each block has a blockIdx which is the index of the block within the grid ! !
!
! ! ! (blockId.x, blockId.y, blockId.z)!
 !
!
Remember, each thread has a threadIdx within the block; it is 3D:!
! threadIdx.x, threadIdx.y, and threadIdx.z!
!
 !

Grid of Blocks
One block is too small to handle most GPU problems. Need a grid of blocks.!
Blocks can be in 1-D, 2-D, or 3-D grids of thread blocks. All blocks are the same size.!
!
The number of thread blocks depends usually on the number of threads needed for a
particular problem.!
!
Example for a 1D grid of 2D blocks:!
!
int main()!
 {!
 int numBlocks = 16;!
 dim3 threadsPerBlock (N,N); //1 block of N x N x 1 threads!
!
 MatAdd<<<numBlocks, threadsPerBlock>>(A, B, C);!
!
Each block identified by build-in variable: BlockIdx. Dimension of block!
given by built-in blockDim variable (Dx, Dy, Dz). This is same as threadsPerBlock!
!
!
 Max dimension size of a grid size (x,y,z): (65535, 65535, 65535) Compute C. <3!
 Compute Capability >3: (2147483647, 65535, 65535)

2D Grid
dim3 GridDim(3,2); !
dim3 BlockDim(4,3); //Dx, Dy, Dz!
!
In kernel (using thread index): !

int	
 i	
 =	
 blockIdx.x	
 *	
 blockDim.x	
 +	
 threadIdx.x;	

int	
 j	
 =	
 blockIdx.y	
 *	
 blockDim.y	
 +	
 threadIdx.y;	

!

Consider N x N array and each element assigned a thread:!
!
dim3 threadsPerBlock(16,16); //Dx, Dy = BlockDim!
!
dim3 numBlocks(N/threadsPerBlock.x, N/threadsPerBlock.y)// GridDim!
!
MatAdd<<<numBlocks, threadsPerBlock>>(A,B,C);

Dx=4, Dy=4

threadId = 9 x 16+8

threadIdx:

!
#include <iostream>!
using namespace std;!
int main()!
{!
 float * x; //host arrays!
 float * y;!
 float * d_x; //device arrays!
 float * d_y;!
 int n = 1048576;!
 x = new float[n]; !
 y = new float[n];!
 // intialize x,y; a initialized in kernel call!
 for (int i = 0; i<n; i++)!
 {!
 x[i] = (float)i;!
 y[i] = (float)i;!
 }!
 cudaMalloc(&d_x, n*sizeof(float));!
 cudaMalloc(&d_y, n*sizeof(float));!
 cudaMemcpy(d_x, x, n*sizeof(float), cudaMemcpyHostToDevice);!
 cudaMemcpy(d_y, y, n*sizeof(float), cudaMemcpyHostToDevice)!
 !
 saxpy<<<4096,256>>>(n, 2.0, d_x, d_y); //4096*256 = 1048576

Class Problem:!
Write kernel to carry out the!
following: y[i] = a * x[i] + y[i];!
!
saxpy (int n, float a, float *x, float *y)

Answer: SAXPY kernel

__global__ void saxpy(int n, float a, float *x, float *y)!
{!
 int i = blockIdx.x * blockDim.x + threadIdx.x;!
 if (i < n) !
 y[i] = a * x[i] + y[i];!
}

