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Summary of Findings 
 
We investigated climate change-driven effects on electricity demand.  The research focused on the estimating 
the impact of higher temperatures on electricity consumption using hourly data and annual data. The 
Pennsylvania-New Jersey-Maryland (PJM) Independent System Operating (ISO) or mid-Atlantic council region 
of the North American Electric Reliability council was primary area for the study. Additional data was used 
from the East Central Area Reliability (ECAR) and Southeastern Electric Reliability council (SERC). 
 
Scenarios were constructed to present the impact of a 2 degree Fahrenheit increase in temperatures.  Short-run 
and long-run models were used in generating the scenarios. 
 
The short-run models were constructed to estimate the sensitivity of the daily load curve to hourly temperature 
for all ten load regions in the PJM separately. The responses are conditional on a given stock of electricity using 
equipment, building shell efficiencies, stock of electricity generation facilities, and transmission network. 
Simulations were run to examine the effect of the temperature increase. These short-run models are especially 
useful for their detail and relating peak loads and changes in the load curve or human response in terms of 
electricity demand.  
 
The long-run model results are based on a “general equilibrium approach” for the entire U.S. The National 
Energy Modeling System (NEMS) which the Energy Information Administration (EIA) uses in making 
projections to 2025-2030 was the primary model. In the NEMS, households and firms can adjust stock of 
electricity using equipment and building shell efficiencies in response to relative prices, economic activity, and 
technology choices. Similarly, the electric utility sector adjust the mix and stock of generating facilities and 
transmission network in response to expected demand, relative prices of input sources, technology, and 
regulatory environment.  
 
The output from the short-run and long-run consumption models in terms of load projections and elasticities serve 
as the inputs to supply side models which allocate or dispatch the electricity from the generation stock and mix to 
meet the load. Given the dispatch assumptions, that model will project with electricity sector emissions, with a 
focus on NOx.   Climate change will alter the level and timing of electricity demands, as well as the thermal 
efficiency of electricity generating units.   With a given capital stock of generating plant (short run analysis), this 
will change their operations and emissions.   Even in the presence of seasonal or annual emissions caps, emissions 
might then increase during the warmest days when ozone episodes are most likely to occur.  In the long run, the 
mix and amounts of various types of generation technologies will adjust, and if climate change occurs, the resulting 
generation plant will be different than if climate change does not occur.   This has further implications for the 
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timing and amount of emissions.   This portion of the research project developed and demonstrated methods for 
obtaining temporal and spatial distributions of NOx emissions from power plants, and for quantifying the effects of 
climate change scenarios on those distributions.  
 
In Section 1 of this report we explain the methodology and models used in the short-run (hourly) responses of 
electricity consumption to changes in temperature. Section 2, contains results on the potential long-run impacts of 
temperature on electricity loads. Two different modeling approaches were used. The first is based on the U.S. 
Energy Information Administration’s National Energy Modeling System (NEMS) and the second is based on a 
regional econometric model by sector of electricity consumption.  In the next section, we provide a brief 
background on the analyses of weather effects on electricity consumption. In Section 4, the database programs used 
in the analysis are briefly described so that the work may be replicated. The final section provides other explicit 
accomplishments of this research projects. All material is provided in electronic format on a CD by section. 
 

The major findings concerning the short- and long-run effects of climate change on electricity loads are 
summarized as follows: 

 
 
1. Short-run Effects of Weather on Electricity Loads 
 

Hourly forecasting models were built and parameterized using approximately eight years’ worth of 
hourly temperature and load data for the ten utility companies of the PJM control area.  Two seasonal OLS 
models were developed (Summer and Winter) using deterministic variables (Day, Month, Holiday), linear, 
quadratic, and cubic functions of hourly temperature ( 32 ,, TTT ) and an autoregressive component (1-hour, 2-
hour, 3-hour, and 24-hour lagged loads).  The results of testing over fifty model specifications for goodness of 
fit indicate that a model including the variables listed above, and with a single parameter for each temperature 
variable, is the specification with the best explanatory power for the utilities in the PJM region.   

A simulation of a 2°F increase in temperature for July and August 2000 resulted in a 4.6% increase in 
electricity demand for the region as a whole.  These being the peak cooling demand months, the average 
increase over the year would likely be somewhat lower.  These results are similar in magnitude to results
reported for a simulation of electricity demand in California by Baxter and Calandri (1992), who found a 3.8% 
increase over the year for a similar warming scenario. 
 

As a verification of the OLS results, a set of hourly models was also developed using the artificial neural 
network (ANN) approach.  ANN modeling for the Baltimore region within PJM showed that simulated 
electricity demand using ANNs is similar to simulated demand using OLS models, in terms of magnitude and 
variation of hourly loads above the baseline forecast (the forecast made in the absence of any temperature 
change).  Over a simulation period from July 1, 2000 through August 30, 2000, for a uniform two-degree 
Fahrenheit increase in temperature, the ANN specification predicted an average increase of 4.5 percent over the 
baseline forecast, with individual hourly models’ results ranging from 2.0 percent up to 6.9 percent above the 
baseline ANN forecast.  The OLS specification for Baltimore only (as opposed to all of PJM), meanwhile 
predicted a 4.4 percent increase above baseline, with individual hourly models’ results ranging from 2.1 percent 
up to 6.3 percent above the baseline OLS forecast.   
 
2. Long-run Effects of Weather on Electricity Loads 
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The NEMS attempts to capture the interaction between the energy markets and economic activity. In the 
NEMS, households and firms can adjust the stock of electricity using equipment and building shell efficiencies 
in response to relative prices, economic activity, and technology choices. Similarly, the electric utility sector 
adjusts the mix and stock of generating facilities and transmission network in response to expected demand, 
relative prices of input sources, technology, and the regulatory environment. Economic growth and 
demographic trends are included in making the projections by the 9 U.S. Census regions. 
 
Weather and temperature are important drivers for electricity consumption. More than 40% of end-use energy 
consumption is related to the heating and cooling needs in the residential and commercial sectors. Electricity 
consumption forecasting models typically use thresholds for defining when the cooling and heating needs are 
required. A fairly standard set of thresholds are temperatures above 72 degrees Fahrenheit and below 65 degrees 
Fahrenheit respectively. The difference in the daily high and the 72 degrees is referred to as a cooling-degree 
day (CDD); a similar calculation is performed to construct a heating-degree day (HDD) by taking the difference 
between the low and 65 degrees.  
 
We constructed a scenario based on the average of the 5 warmest summers and the 5 warmest winters relative to 
the remaining periods to examine the effects of a warming in temperature. This yields approximately a 2.09 
degree Fahrenheit increase in CDDs and almost 4 degree Fahrenheit decrease in HDDs. These temperatures are 
consistent with climate change considered by the ICCG. 
 
Our hypothesis was that warmer weather would change the annual pattern or shape of the load from winter to 
summer. In addition, the implied daily load could change more toward peaking periods. Higher temperatures 
would reduce residential and commercial demand for space heating in the winter and increase the demand for 
space cooling in the summer. The former is typically supplied by fossil fuels while the later is almost 
exclusively provided by electricity.  The impact could lead to greater relative peaking capacity needs. 
 
The electricity demand modules of NEMS, particularly residential and commercial, calculate electric loads 
based conditional on the CDD and HDD variables along with the economic and embodied technical change in 
the stock of energy using equipment and structures. The load is allocated on what is called the “load curve”
which illustrates the relationship of power consumption/supply during sub-periods of the period covered. This 
can be broken out be season, day of the week, and time of day. 

The impact of temperature warming in the summer scenario had two important effects. First, average load 
demand was about 2.7 percent higher in the summer months. Second, peak demand was 5.4 percent higher. 
Thus, the results suggest an important impact on the load shape. Climate change will have a disproportionate 
effect on load in the peak periods. This may be exactly the periods when ozone is likely to be more of a 
problem. The JHU teams’ dispatch and supply emissions models and weather models will examine these 
potential these effects. 

 
3. Additional Accomplishments 
 

• The EPA STAR grant support a research assistant, Christian Crowley, to formulate and complete his 
PhD dissertation, on economic modeling as applied to natural resource issues. Portions from two his 
three essays are presented in this report. Christian Crowley defended his dissertation on Monday, 
December 12, 2005. The two essays are included in the report: 1) Electricity Demand Forecasting and 
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Climate Change: Results for the PJM Region and 2) Forecasting Electricity Demand: A Neural Network 
Approach. 

• The grant supported presentations national and international conferences on energy demand In addition, 
several working papers are in process and will be submitted for publication in professional journals. 
They include: 

o RER/Itron MetrixND Users Meeting (September 2002), San Diego, CA 
o IAEE (July 2003), Mexico City 
o IAEE (July 2004), Washington, DC 
o INFORMS (October 2004), Denver, CO 
o IAEE (June 2005), Taipei 
o Working Paper: Seasonality and Weather Effects on Electricity Loads: Modeling and 

Forecasting 
 
• The results from the consumption forecasting and simulation models were linked to supply and weather 

models. The scenarios of hourly load projections and the long-run load projections for the PJM region 
estimated from this research were able to be fed into the supply side models for generating the dispatch 
of electricity and resulting emissions. In addition, simulations were performed based on weather models 
projections for hourly temperature warming scenario data for 1991-1997 and 2050-2055 
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Section 1: Background on Electricity Demand Modeling and Weather 
 
Section 1.1 Short-run or Hourly Models 
 
 Bunn and Farmer (1985) and EPRI (1977) contain collections of papers on the modeling forecasting of 
hourly electricity loads. Total system loads were modeled by Schneider et al. (1985) in terms of base load, 
weather sensitive load, error adjustment, and a bias correction. Ackerman (1985) compared alternative forms of 
ARIMA models. Gupta (1985) proposed a model with seasonal time varying parameters to historical loads and 
weather information. The parameters were adaptive and would change in response to changing load processes.  
Ramanathan et al. (1997) developed a series of models for forecasting loads as functions of hourly, daily and 
seasonal factors, autoregressive components, and weather effects. The innovation of their framework was that 
rather than modeling the entire load series, they developed individual models for each hour. This proved 
productive in terms of explaining the data and in forecasting. 
 
 In general, aggregate analyses have found that commercial and residential uses are much more sensitive 
to temperature increases than industrial uses, justifying the focus of this proposal on the former.  These studies 
have usually concluded that climate warming would produce a few percentage point increase in cooling 
requirements, and a similar decrease in heating requirements (Scott et al., 1994; Morris et al., 1996; Sailor and 
Munoz, 1997); the canceling of the two effects often implies that the net impact on annual energy use may be 
relatively small (e.g., Darmstadter, 1993).  As an example of such a study, Baxter and Calandri (1992) projected 
that a 1.9oC warming would increase California’s annual electricity requirements by 2.6%.  What is more 
relevant, however, is how that change is distributed within the year.  In particular, the greatest increases are 
likely to occur during weekdays during the air conditioning season, precisely at those times that tropospheric 
ozone violations occur.  For instance, Baxter and Calandri’s (1992) analysis indicates that their assumed 1.9oC 
increase would magnify peak summer electricity demands by 3.7%.  It is possible that the proportional increase 
during periods of high ozone may be even higher; however, no studies have analyzed climate’s effect on energy 
demands on a temporal scale fine enough to consider this possibility.  One of this project’s purposes is to fill 
that gap. 
 
 The result of using load duration curves in a long-run production simulation model is a set of estimates 
of average cost and emissions by generating unit type for a given period of time.  This will permit a general 
assessment of the strength of the linkage between regional climate change and emissions of criteria pollutants.  
However, because of the high correlation between time-varying electricity demands (and thus emissions) and 
the meteorological conditions that influence ambient pollutant concentrations, the impact of that linkage upon 
concentrations and ensuing health effects must be based upon a detailed chronological simulation of both power 
system operations and pollutant transport and transformation. Utility experience across the U.S. shows that 
variations in weekday demands are most strongly associated with temperature, although wind, humidity, and 
cloud cover are also factors that are frequently considered in short-term models in Liu et al. (1996).   Typically, 
80% or more of the variation is associated with weather, and for systems we have studied, peak electric 
demands in the summer can easily vary by 25% or more because of day-to-day changes in temperature [Hobbs 
et al., 1998].   
 
Section 1.2 Long-run Models 
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 In Climate Change Impacts in the United States (NAST 2000) the National Assessment 
Synthesis Team identified areas where human and economic behavior would be affected by climate change. 
These effects may increase energy costs for consumers and firms, depending on the types of energy used and 
the geographic region considered. These impacts, and resulting feedback responses, may further impact cost 
effects and overall carbon emissions. One area the Team identified was heating and cooling requirements for 
residential and commercial buildings. 
 

 Rosenthal, Gruenspecht, and Moran (1995) worked with data from national building surveys and 
five global climate change models to estimate the cost impacts. They used historical regional weather data and 
expectations of future weather patterns, converting these into cooling and heating measures. Data on building 
and equipment stocks were converted into efficiency or intensity units to analyze the requirements for energy 
use and the resulting economic costs. The results of this study suggested that total U.S. energy requirements
would show a slight decrease in the aggregate in response to climate warming. 
 

 Hadley, Erickson, and Hernandez (2004) examined the impacts of climate warming using the 
National Energy Modeling System (NEMS) and a general circulation model of the Earth’s climate.  The authors
considered two cases: a 2.1°F increase and a 6.0°F increase. They present results by U.S. Census region and 
find offsetting effects: heating needs decline in the winter while cooling needs increase in summer. Total energy 
consumption declines with the former effect, and increase with the latter. Responses vary by region as well as 
with the energy fuel mix considered and with end-use demand.  On the whole, costs tend to decline in northern 
parts of the country, and tend to rise in the southern regions. 
 
Section 2: Short-run Modeling and Forecasting of Electricity 
 

Section 2.1: OLS 
The General Model 

A seasonal model was chosen to isolate differences between summer demand and winter demand.  
Hourly temperature terms include the level, the square and the cube of the temperature, to account for non-
linearities in the temperature-load relationship.  An autoregressive component accounts for the loads of previous 
hours.  Deterministic variables capture the effects of different load patterns for different days of the week or 
holidays, and for the individual months within a model’s season.  The summer months are June, July, August 
and September, while the winter months are December, January, February and March.  The most general form 
of the summer model contains the full complement of variables: 
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In Equation (1), the subscript ht refers to hour h on day t, T is the temperature, and Day and Month are 
dummies that take on the value of 1 or 0 to isolate the effects of the various weekdays (or holidays) and months.  
For any given model specification, there is a family of twenty-four related hourly models, one each for 

1 24h = �  



Final Report EPA Weather Effects on Electricity Loads Page 7 of 48 

In the summer version of the model, �0 captures the combined effect of Monday and June.  The next 
seven � terms capture Tuesday through Sunday and the Holiday variable, which takes on a value of 1 for days 
that fall on common holidays, and 0 otherwise.  The three � terms represent July, August and September.  The 
levels, squares and cubes of hourly temperature interact with the Month variables through the multipliers iα , iγ
and iλ , where i = 1, 2, 3, or 4, to  represent June, July, August or September.  As an example, the static 

component of the electric load for hour h on Fridays ( )5β  in July ( )1δ  is given by the expression 
2 3

0 5 1 2 2 2h h hT T Tβ β δ α γ λ+ + + + + . 

The dynamic component of demand is given by the autoregressive portion of the model, 
1 2 3 24

1 2 3 4( )L L L L Lφ φ φ φ φ= + + + , where L is the lag operator.  This term captures the loads of the previous three 

hours, as well as the previous day’s load. 
 The winter model is similar in form to the summer model, referencing the winter months December, 
January, February and March.  For the winter model, the constant term �0 captures the effects of Mondays and 
January.   
 The goal of the modeling procedure is to investigate hourly demand elasticities with respect to 
temperature.  Given the model specification in Equation (1), the elasticity for hour h in month j is given by  

( )2
2 3hj hj hjhj hj hj hjT T Tη α γ λ= + + ⋅ ,   (2) 

where hjT  indicates the monthly mean temperature (in month j) for the hour under consideration (hour h). 

Model Selection 
Carrying out the “general to specific” modeling approach advocated by Hendry (1993) involves 

beginning with the general model listed above in Equation (1), then excluding classes of variables to generate a 
family of related, simplified models.  To find a parsimonious model specification with the most explanatory 
power, Diebold (2001) recommends comparing the Akaike information criterion (AIC) and Schwartz 
information criterion (SIC) of the various models with the original, “unrestricted” model of Equation (1).  The 
AIC and SIC are expressions of mean squared error, with a penalty for degrees of freedom1; these measures are 
commonly used for selecting among various forecasting models. 

 
Ranking Models by Explanatory Power 

Model statistics were calculated using EViews 4.1 (Quantitative Micro Software, 2002), for a group of 
fifty- three related candidate model specifications.  Specification #1 is the unrestricted specification given in 
Equation 1.  The remaining fifty-two model specifications were derived from a list of alternate hypotheses 
about the relationships among the variables in the unrestricted specification.  These hypotheses take the form of 
restrictions to the parameters in Equation (1).  A complete list of the models tested, and their generating 
hypotheses, is given in Appendix 1 for the summer model specifications, and Appendix 2 for the winter model 
specifications. 

A mean AIC for Specification #1 was found by averaging the AIC scores across the family of twenty-
four hourly models that use Specification #1 ( 1,tLoad =�  up to 24,tLoad =�).  A mean SIC score for 

Specification #1 was derived similarly.  In addition to the mean scores, a pair of median scores was calculated 
using the median AIC or SIC from the family of twenty-four hourly models.  Similar composite scores were 
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found for all fifty-three candidate model specifications.  The candidate specifications were then ranked by each 
of these “composite” selection criteria, from lowest to highest2 to consider which specifications created the best 
fitting models in the most parsimonious way.  This model generation and ranking procedure was performed for 
each of the ten utility control regions within PJM3, once for the summer models, and once for the winter 
models.   

Each selection criterion in turn, is examined in an attempt at identifying one “universal” model 
specification that performs well across the entire PJM area.  Considering the top specifications across the utility 
regions, the summer models have a more clear-cut set of “winners” than the winter models do.  Among the 
“composite” selection criteria, the mean-composites produced more consistent results than the median scores, 
giving stronger recommendations for the preferred models across all utility regions.  Compared with the mean 
AIC, the mean SIC score tends to favor a smaller set of models across all regions, due to the SIC’s higher 
penalty for degrees of freedom.  In light of these results, the mean-composite-SIC was chosen as the selection 
criterion for this study, as the most selective of the four criteria considered.  Using the mean SIC score to 
choose the best model for each region resulted in two different specifications coming out ahead: for nine 
regions Specification #52 was the best, and for one region #49 had the lowest mean SIC.   

 
The Winning Specification 

 
The results of the selection process indicate that the explanatory power of a model is increased by 

including the deterministic effects of weekdays, weekends, holidays and the months.  Temperatures in level, 
squared and cubed terms also tend to add to the explanatory power of a model.  The clear winner across all 
regions is model #52, which achieved the lowest mean SIC in nine of the ten PJM utility regions for both 
summer and winter, coming in second-lowest in the tenth region (BGE).   

 

The specification for model #52 includes the full complement of deterministic variables (Day, Month, 
Holiday), the autoregressive components (1-hour, 2-hour and 3-hour lags, plus a 1-day lag), and one parameter 
each for the level, square and cube of the temperature.  The assumption underlying Model #52 is that there is no 
variation in temperature effects across the months of the season, i.e. 4321 αααα === , and likewise for iγ  and 

iλ .  In other words, the demand effect of the temperature level ( iα ) is the same in June as it is in July, August 

or September, and likewise for the square (iγ ) and cube ( iλ ) of the temperature.  These restrictions hold for 

both summer and winter models (though the winter months are December, January, February and March).  The 
parameterization of Specification #52 for the Hour 8 model of the AE region (Atlantic Electric Co.) is reported 
in Table 2.1.  

The parameterization of Specification #52 for the Hour 8 model indicates small but highly significant 
negative Day effects (Tuesday through Sunday, and Holiday).  The same is true for the Month effects, although 
July appears to be insignificantly different from zero.  The Temperature effects are highly significant: small and 
negative for the temperature level; smaller still and positive for the square of temperature; minute and negative 
for the cube of temperature.  Among the lagged loads, the load from the previous hour (listed as “Load_07(0)” 
in Table 2.1) and the load from the same hour on the previous day (“Load_08(–1)” in the table) are highly 
significant and have a positive effect on the load for Hour 8.  The high R2 value reported for this model is 
typical for highly autocorrelated series that include lags in the model specification.  This autocorrelation also 
accounts for the large and significant coefficient on the 1-hour lag. 

                                                 
2 Both AIC and SIC are measures of model error, thus a low score indicates a better model fit. 
3 Error! Reference source not found. contains information on the utility companies in the PJM control area. 
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Dependent Variable: LOG(LOAD_08) 
Method: Least Squares 
Date: 04/28/04   Time: 14:45 
Sample: 6/01/1995 9/30/1995  6/01/1996 9/30/1996  6/01/1997 9/30/1997 
          6/01/1998 9/30/1998  6/01/1999 9/30/1999  6/01/2000 9/30/2000   
        6/01/2001 9/30/2001  6/01/2002 9/30/2002  6/01/2003 9/30/2003 
         
Included observations: 1098 
Newey-West HAC Standard Errors & Covariance (lag truncation=6) 

Variable Coefficient Std. Error t-Statistic Prob.   

C 1.525062 0.184488 8.266477 0.0000 
TUESDAY -0.004523 0.001528 -2.960444 0.0031 
WEDNESDAY -0.004593 0.001531 -2.999382 0.0028 
THURSDAY -0.004750 0.001341 -3.542811 0.0004 
FRIDAY -0.003617 0.001483 -2.438794 0.0149 
SATURDAY -0.026965 0.002636 -10.22842 0.0000 
SUNDAY -0.039265 0.003404 -11.53554 0.0000 
HOLIDAY -0.024218 0.005282 -4.584677 0.0000 
JUL -0.001572 0.001467 -1.071752 0.2841 
AUG -0.010664 0.001755 -6.076508 0.0000 
SEP -0.027428 0.001585 -17.30021 0.0000 
(JUN+JUL+AUG+SEP)*TEMP_08 -0.030828 0.008163 -3.776449 0.0002 
(JUN+JUL+AUG+SEP)*TEMP_08^2 0.000410 0.000119 3.448763 0.0006 
(JUN+JUL+AUG+SEP)*TEMP_08^3 -1.64E-06 5.72E-07 -2.867345 0.0042 
LOG(LOAD_07(0)) 1.011322 0.038935 25.97456 0.0000 
LOG(LOAD_06(0)) -0.186012 0.119803 -1.552649 0.1208 
LOG(LOAD_05(0)) 0.054116 0.095028 0.569470 0.5692 
LOG(LOAD_08(-1)) 0.017087 0.006160 2.773783 0.0056 

R-squared 0.993694     Mean dependent var 7.065505 
Adjusted R-squared 0.993595     S.D. dependent var 0.144466 
S.E. of regression 0.011562     Akaike info criterion -6.065925 
Sum squared resid 0.144375     Schwarz criterion -5.983937 
Log likelihood 3348.193     F-statistic 10010.95 
Durbin-Watson stat 1.773299     Prob(F-statistic) 0.000000 

Table 2.1. Statistics for Specification #52, Hour 8 Model (AE region) 

 
Elasticities for Specification #52 

Figure 2.1 shows an average load curve for the AE region by hour.  In the figure, the load reported for 
each hour is the average load at that hour over the month of July 2000.  The load is measured in megawatt-hours 
(MWh) on the right-hand vertical axis.  The left-hand vertical axis records the corresponding hourly 
temperature elasticities, shown as bars, and calculated using Equation    (2).  Shading of the hourly elasticity bars 
indicates significance: solid bars have temperature elasticities that are significant at 95%.  Note that the 
elasticity depends on three estimated coefficients associated with the temperature: α , γ  and λ , for the level, 
square and cube of the temperature.  The solid (significant) bars in Figure 2.1 indicate significant values for all 
three coefficients (α , γ , λ ), elasticities with at least one insignificant coefficient are shown with hashed bars.  
Throughout this study, Hour 1 refers to the hour between midnight and 1:00 a.m. 

Temperature elasticities appear to be lowest in the nighttime and early morning, with elasticities from 
0.02 to 0.05 between the hours of 1 a.m. and 7 a.m.  Though there is some air conditioning responsiveness on 
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hot nights, most consumers are asleep or otherwise “off- line” during these hours.  With the start of the work 
day, temperature elasticity increases dramatically, rising above 0.19 between 7 a.m. and 10 a.m.: temperatures 
and loads rise as businesses open and people begin their daily activities.  Throughout the working day, 
elasticities are more moderate, remaining between 0.08 and 0.12 from 10 a.m. to 4 p.m.  Elasticities are 
relatively low during the late afternoon and into the night, falling to between 0.05 and 0.10 after 4 p.m., until the 
cycle repeats.   

Temperature Elasticity and Load - AE July 2000
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Figure 2.1. Temperature Elasticity and Load, AE region, July 2000 

 

Simulation 
A climate change simulation was conducted for July and August 2000, using the simple scenario of a 

uniform 2°F increase in all hourly temperatures.  This simulation involves parameterizing the twenty-four 
hourly models (Specification #52) on the historical temperature data from January 1, 1995, and forecasting all 
hourly loads for the first day in the simulation period (July 1, 2000).  The difference from the original forecast is 
that these simulation forecasts for July 1 are made using the simulation temperatures for July 1, where all hourly 
temperatures are two degrees above higher than historical series.  Next the 1-day ahead forecasts are made for 
July 2, using the simulation temperatures for July 2.  For these 1-day ahead forecasts, the lagged load values are 
the simulation forecasts from July 1.  The July 2 simulation forecasts are used to make the 2-day ahead 
simulation forecasts for July 3, and so on, through the end of the simulation period on August 31.   

The change from the unconditional forecast (made using the original temperature series) to the 
conditional forecast (that is, conditional on the artificial temperature series) gives the model’s estimate of the 
effect of warming on electricity demand.  This change is shown in percentage terms in Figure 2, for the month 
of August 2000.  Two hours of the day have been selected as representative: Hour 18 (5:00 p.m. to 6:00 p.m.) 
typically has the highest demand of any hour of the day, while Hour 5 (4:00 a.m. to 5:00 a.m.) has the lowest.  
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AE Load: August 2000 with 2°F Increase
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Figure 2.2. Percent Increase in Simulated Load: AE region, August 2000 

The simulation shows an increase in load forecasts throughout the month of August 2000 (July 2000 
shows the same result).  On most days, the response at Hour 18 is one percent to three percent higher than the 
Hour 5 response, reflecting the higher demand for electricity, in particular cooling, at that time of the day in 
August.  The overall result for the AE region over the two-month simulation period is a 5.4% increase in 
electricity demand due to the 2°F rise in temperatures.  The AE region is somewhat more responsive than the 
PJM region taken as a whole.  When the results for all ten utility regions are averaged4, the entire PJM region 
sees a 4.6% increase in demand over the same two months.  The response for the PJM region as a whole (for the 
same two hours) is shown in Figure 2.3.  

 
As for the AE region alone, the PJM region as a whole shows a greater increase in load for the high-

demand hours than for the low-demand hours.  In Figure 2.3, peak loads for Hour 18 are shown increasing 
between four and six percent over the baseline forecast, while loads for Hour 5 are typically between two and 
five percent above baseline.  Low-demand days tend to affect all hours of the day similarly: the third week of 
August is a low-demand period throughout the day, as both Hour 5 and Hour 18 dip to a low point in the 
forecast.  These effects were found to be consistent across all regions of PJM. 

                                                 
4 Note that these are population-weighted averages.  The weights are taken from the relative contribution of each 
utility’s average load over the period to the average load for the entire PJM region during the same period. 
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PJM Load: August 2000 with 2°F Increase
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Figure 2.3. Percent Increase in Simulated Load: PJM region, August 2000 

 

Section 2.2: ANN 
This section compares the results of the simulation forecasts obtained in the OLS modeling effort with 

the results of an artificial neural network (ANN) approach.  This exercise was conducted in part as a verification 
of the results obtained from the OLS models.  Thus the ANN modeling effort focuses on a single region of PJM, 
namely the area served by Baltimore Gas and Electric (BGE).   

The inputs to the ANN models are identical to those used in the OLS approach, including deterministic 
calendar variables, temperature and lagged loads.  The optimal neural network specification was determined by 
conducting a performance analysis on various hypothesized network architectures, and by training the 
“winning” network with historical data.  The hourly neural network models each used eighteen independent 
“input” variables to produce an hourly load result.  The final architecture for each hourly model (i.e. the number 
of neurons in each model’s input layer) is reported in Table 2.2 
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Model Optimal Input Neurons 

Hour 1 2 � � 

Hour 2 2 � � 

Hour 3 2 � � 

Hour 4 3 � � � 

Hour 5 4 � � � � 

Hour 6 2 � � 

Hour 7 2 � � 

Hour 8 2 � � 

Hour 9 2 � � 

Hour 10 3 � � � 

Hour 11 2 � � 

Hour 12 3 � � � 

Hour 13 2 � � 

Hour 14 2 � � 

Hour 15 1 � 

Hour 16 1 � 

Hour 17 1 � 

Hour 18 1 � 

Hour 19 2 � � 

Hour 20 3 � � � 

Hour 21 2 � � 

Hour 22 2 � � 

Hour 23 2 � � 

Hour 24 2 � � 

Table 2.2. Optimal Model Architecture 

As the focus of the OLS modeling effort was the PJM region as a whole, this section includes a brief 
discussion of the OLS results for the BGE region alone.  The remainder of this section compares the general 
results of the two approaches, proceeding to a more detailed consideration of the daily high- and low-demand 
hours.  The final sub-section reports average results for each of the hourly series obtained. 
OLS Simulation Results for BGE Region 

The average predicted increase in BGE’s hourly load over the simulation period is remarkably similar 
for both OLS and ANN specifications: a 4.4 percent increase for the OLS models, and a 4.5 percent increase for 
the ANN models.  The range of increases over baseline predicted by the OLS specification is demonstrated by 
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Figure 2.4, which shows the simulation-to-baseline forecast ratio over the two-month simulation period, for 
Hours 5 and 17.  For the data considered here, Hour 5 is on average the lowest-demand hour of the day, while 
Hour 17 is the highest-demand hour.  The ANN version of this graph is given in Figure 2.5. 
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Figure 2.4 Ratio of Simulated to Baseline Load: BGE region, 7/1/2000 – 8/31/2000 
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Figure 2.5 Ratio of Simulated to Baseline Load: BGE region, 7/1/2000 – 8/ 31/2000 

Both OLS and ANN simulations show a fairly stable temperature-related increase in forecasted load 
over July and August 2000.  The two-degree temperature rise is predicted to increase daily peak load (Hour 17) 
about 4 to 6 percent above the baseline load forecast.  The smallest daily loads (Hour 5) are also shown to 
increase, about 3 percent to 4.5 percent above the baseline.  The ranges are somewhat lower and more compact 
than those derived using the neural network specification.  This description also holds true on average across all 
twenty-four hours of the daily model. 

 

A Closer Look: Two Representative Hours 
To offer some insight into the differences between the results of the OLS models and the ANN models, 

the Hour 5 ratio series for the two specifications are compared in Figure 2.6, and the Hour 17 ratio series are 
compared in Figure 2.7.  In both figures, the two series are seen to be quite similar in terms of range and trend, 
that is to say they tend to predict similar increases over baseline load forecasts, with relatively larger predictions 
for the same days.  The neural network specification shows more variability than the OLS specification, 
especially for the high-demand period (Hour 17) shown in Figure 2.7.  This higher variability in the ANN 
simulation may be due to the relatively large number of parameters in the ANN specification.5  More 

                                                 
5 The total number of estimated parameters in an ANN is given by ( )2 1N k + + , where N is the number of 

neurons in the input layer, and k is the number of input variables. 
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parameters may allow the ANN forecast to be more flexible than the OLS model for modeling high-demand 
episodes. 
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Figure 2.6. Simulation-to-Baseline Ratio for Hour 5 (OLS and ANN Specifications) 
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Sim:Baseline Ratio - Hour 17
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Figure 2.7. Sim:Baseline Ratio for Hour 17 (OLS and ANN Specifications) 

Average Results over all Hours 
The average predicted increase by both OLS and ANN models for the two-month simulation period is 

compared across all twenty-four hourly models in Figure 2.8.  In the figure, the OLS ratios of simulation load to 
baseline forecast (standing bars) is shown to have the same general profile as the ANN ratios.  For most hours, 
the neural network specification predicts a larger temperature-related increase over the baseline forecast.  
Notably, the exceptions to this relationship are the highest-demand hours of the day: the afternoon and evening 
period captured in the models for Hour 15 through Hour 19 (2:00 p.m. to 3:00 p.m., through 7:00 p.m.).  For 
these hours, the OLS specification predicts a larger increase over baseline load forecasts, by about one-half of a 
percent.  It is unclear why the ANN simulation forecasts predict a smaller increase in load for the peak-demand 
hours.   

As with the difference in forecast variation for Hour 17 shown in Figure 2.7, this difference may be due 
to the larger number of parameters in the ANN specification, and the greater potential for variation in model 
specification from one hourly model to the next.  That is, all hourly OLS models used the Specification #52, 
which was selected as the best specification across all hours of the day.  Each hour’s model was parameterized 
individually, allowing for differences in the relationship among the variables at different times of the day.  In 
contrast, the specification of the ANN models is not consistent across all hourly models, as the optimal 
architecture (number of input neurons) was selected separately for each hour’s model.  As a result, the ANN 
may be modeling a slightly different underlying process for these high-demand hours, as compared to the more 
consistent specification of the OLS models. 
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Sim : Baseline Ratio (OLS and ANN Specifications)
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Figure 2.8. Predicted load increase for all hourly models 

(average over 6/1/2000 - 7/31/2000) 

 
 A relatively smaller temperature-related increase during the peak load hours of the day may not be 
unlikely.  For example, some sort of threshold effect could be at work: summer afternoon and evening hours are 
currently marked by high electricity demand, as warm temperatures during these times create a demand for 
space cooling.  With many air conditioning units are already in use, an increase in air temperature may have 
little effect on electricity consumption for these times of the day.  In the late evening and early morning 
however, historically cooler temperatures have allowed for lower space cooling demand in these periods.  A rise 
in temperatures during these hours could prompt a shift in cooling demand, and as more people leave their air 
conditioners on overnight, the result would be an increase in electricity use over historical patterns. 
 
Section 2: Summary 
 The results of the ANN modeling exercise showed that simulated electricity demand using ANNs is 
similar to simulated demand using OLS models, in terms of magnitude and variation of hourly loads above the 
baseline forecast (the forecast made in the absence of any temperature change).  Over a simulation period from 
July 1, 2000 through August 30, 2000, for a uniform two-degree Fahrenheit increase in temperature, the ANN 
specification predicted an average increase of 4.5 percent over the baseline forecast, with individual hourly 
models’ results ranging from 2.0 percent up to 6.9 percent above the baseline ANN forecast.  The OLS 
specification, meanwhile predicted a 4.4 percent increase above baseline, with individual hourly models’ results 
ranging from 2.1 percent up to 6.3 percent above the baseline OLS forecast.   
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Section 3: Long-Run  
 This section is in two parts. .Part 1 describes the NEMS model responses to climate 
change.  Part 2 explains the long-run temperature sensitivities from the Regional Short-term 
Energy Outlook (RSTEO). 
 
Section 3.1 The NEMS Model Responses to Climate Change 
 
 The long-run model results for climate change impacts on electricity consumption are based on two 
kinds of models. The first is a “general equilibrium approach” for the entire U.S. The National Energy 
Modeling System (NEMS) which the Energy Information Administration (EIA) uses in making projections to 
2025-2030 was the primary model. In the NEMS, households and firms can adjust stock of electricity using 
equipment and building shell efficiencies in response to relative prices, economic activity, and technology 
choices. Similarly, the electric utility sector adjusts the mix and stock of generating facilities and transmission 
network in response to expected demand, relative prices of input sources, technology, and regulatory 
environment.  

Section 3.1.1 Brief Overview of the NEMS Model 

 The figure 3.1.1 below illustrates the modules of the NEMS. It is taken from the documentation for 
NEMS on the EIA website. NEMS is comprised of 13 modules. There are four supply modules (oil and gas, 
natural gas transmission and distribution, coal, and renewable fuels) and two energy conversion modules 
(electricity and petroleum refineries). Demand by end-use broken out into four modules (residential, 
commercial, transportation, and industrial). There are two modules characterizing the energy/economy 
interactions (macroeconomic activity and world oil markets or international energy activity). The final or 
integrating module provides the mechanism to achieve general market equilibrium among all the other modules. 

 The electricity market is comprised of the interaction between the Energy Market Model (EMM) on the 
supply side and the sector demand models: Residential, Commercial and Industrial. The EMM receives electricity 
demand from the NEMS demand modules every year. In addition other inputs like fuel prices from the NEMS fuel 
supply modules, and macroeconomic drivers or indicators from the NEMS macroeconomic module. It then
estimates the responses by electric utilities and non-utilities to meet demand using economic criteria. The outputs 
from the EMM include: electricity prices to the demand modules, fuel consumption to the fuel supply modules
capital requirements to the macroeconomic module, emissions to the integrating module, and. The model iterates 
until a solution is reached for that model year. 
 
The EMM has several sub-modules: capacity planning, fuel dispatching, finance and pricing, and load and demand
side management. In addition, non-utility supply and electricity trade are accounted for in the dispatch and capacity 
planning sub-modules. The demand and fuel supply modules feed the non-utility generation. This is primarily from 
co-generators and other facilities whose primary business is not the generation of electricity.  The EMM sub
modules or components are designed to embody pricing of electricity, generation, transmission, and capacity 
planning subject to: the delivered fuel prices for coal, petroleum distillates, and natural gas; the cost of operating 
centralized generation plants; macroeconomic inputs for capital costs and domestic investment; and electricity load 
shapes and demand. 
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Figure 3.1.1 
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Section 3.1.2 Brief Overview of the NEMS Electricity Modules 

Table 3.1.1 below shows the inputs, outputs, and exogenous factors used in the Electricity Market modules and 
the related Demand Modules. It is taken from the NEMS documentation on the EIA website too. 
 
      Table 3.1.1 

Module Outputs Inputs from NEMS Exogenous Inputs 
Electricity 
Market 

Electricity prices and 
price components 
Fuel demands 
Capacity additions 
Capital requirements 
Emissions 
Renewable capacity 
Avoided costs 

Electricity sales 
Fuel prices 
Cogeneration supply and fuel 
consumption 
Electricity sales to the grid 
Renewable technology 
characteristics, allowable 
capacity, and costs 
Renewable capacity factors 
Gross domestic product 
Interest rates 

Financial data 
Tax assumptions 
Capital costs 
Operation and maintenance 
costs 
Operating parameters 
Emissions rates 
New technologies 
Existing facilities 
Transmission constraints 
Hydropower capacity and 
capacity factors 

Residential Energy demand by 
service and fuel type 
Changes in housing and 
appliance stocks  
Appliance stock 
efficiency 

Energy product prices 
Housing starts 
Population 
 

Current housing stocks, 
retirement rates 
Current appliance stocks and 
life expectancy 
New appliance types, 
efficiencies, and costs 
Housing shell retrofit indices 
Unit energy consumption 
Square footage 

Commercial 
 

Energy demand by 
service and fuel type 
Changes in floorspace 
and appliance 
stocks 

Energy product prices 
Interest rates 
Floorspace growth 

Existing commercial floor 
space 
Floorspace survival rates 
Appliance stocks and 
survival rates 
New appliance types, 
efficiencies, costs 
Energy use intensities 

Industrial Energy demand by 
service and fuel type 
Electricity sales to the 
grid 
Cogeneration output and 
fuel consumption 

Energy product prices 
Economic output by industry 
Refinery fuel consumption 
Lease and plant fuel 
consumption 
Cogeneration from refineries and 
oil and gas production 

Production stages in energy- 
intensive industries 
Technology possibility 
curves 
Unit energy consumption 
Stock retirement rates 
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 The electricity demand modules of interest with respect to climate change are 
the residential and commercial sectors.  The simple flowchart, Figure 3.1.2 at the right 
briefly illustrates the process used to forecast the demand for electricity in terms of 
cooling and heating needs and other appliances. Given building stocks 
 
 Each year residential households and business firms have as given their stock of 
buildings with their shell efficiencies and stock of appliances with given embedded 
technology. They receive as inputs relative prices of alternatives to centralized or 
electric power from the grid, macroeconomic indicators or drivers for income, 
spending, and interest rates or capital costs. In addition, they have information 
technologies for new structures and energy using appliances. They can choose to retire 
old structures, build new build buildings, renovate, and choose to replace or add new 
appliances. Once decisions are made the resulting electricity demand is calculated. 
 
 Technology adoption and efficiency choices made for residential equipment are 
based on a logistic function. The choices are calculated based assumed market shares 
for competing technologies based on the relative weights of capital (first cost) and 
discounted operating (annual fuel) costs. A deterministic time logistic function 
calculates the penetration and capital cost of equipment in new construction based. If 
climate change is expected to occur (actually realized through model input 
assumptions) and or relative fuel prices increase significantly and remain high over a 
number of years, then more efficient appliances will be available earlier in the forecast 
period than would have been otherwise. 
 
 Technology choices and switching are based on logistic models. Households 
replace space heaters, air conditioners (heat pumps and central air conditioners), water 
heaters, refrigerators, stoves, and clothes dryers by comparing the pay-off of competing 
technologies in single-family homes. The demand modules assume that 20 only percent 
of the replacement market in single-family homes and multifamily and mobile homes 
are eligible to switch fuels in any forecast year. This is an assumption that could be 
examined further in any future study. The functional form is flexible and will allow the 
users to specify different parameters, like retail equipment costs and technology 
switching costs.  
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Section 3.1.3 Regional Coverage of the NEMS Model 

 The NEMS attempts to capture the interaction between the energy markets and economic activity. There are 
different modules for energy supply, energy conversion, and end-use energy demand. The model achieves a 
supply/demand balance in the 9 U.S. Census regions by solving for energy product prices with the quantities 
demand and supplied. See Figure 3.1.3 below. In addition, four states, California, Florida, New York, and Texas are 
analyzed separately.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.3 U.S. Census Regions 

 

 The modules for the electricity sector attempt to reflect market structure and existing energy policies and 
regulations. The electricity market in the U.S. is structured around the 10 NERC regions or reliability councils. 
The NEMS integrating module allocates the Census region level consumption projections each year to the 
NERC regions for dispatching of loads, financial planning, and maintenance and capital construction of 
generating facilities. 
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Figure 3.1.2
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Section 3.1.4 The Impact of Climate Change in the NEMS Model for the PJM Region 

Weather and temperature are important drivers for electricity consumption. More than 40% of end-use 
energy consumption is related to the heating and cooling needs in the residential and commercial sectors. 
Electricity consumption forecasting models typically use thresholds for defining when the cooling and heating 
needs are required. A fairly standard set of thresholds are temperatures above 72 degrees Fahrenheit and below 
65 degrees Fahrenheit respectively. The difference in the daily high and the 72 degrees is referred to as a 
cooling-degree day (CDD); a similar calculation is performed to construct a heating-degree day (HDD) by 
taking the difference between the low and 65 degrees. CDD and HDD are further adjusted by population 
changes to account growth in a particular area and demographic changes in population across regions. 
 

The PJM region has experienced significant variation in heating and cooling degree days from the 
“normal” weather during the period from 1973-2003. The two degree day measures do not appear to be 
correlated.  We constructed a scenario based on the average of the 5 warmest summers and the 5 warmest 
winters relative to the remaining periods to examine the effects of a warming in temperature. This yields 
approximately a 2.1 degree Fahrenheit increase in CDDs and an almost 4 degree Fahrenheit decline in HDDs. 
The range for summer temperatures and cooling needs ranged from 16 percent below (1976) to 15 percent 
above (1998) average respectively. Heating degree days or winter temperature needs ranged from 11 percent 
colder (1978) to 12 percent warmer (1998) than average respectively. Figure 3.1.3 shows the historical values 
for CDD and HDD in the Mid-Atlantic Census region from 1973-2003. Histograms and summary statistics are 
presented in Figures 3.1.4 and 3.1.5 respectively for the two measures. 
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Figure 3.1.3 
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Figure 3.1.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.1.5 
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The electricity demand modules of NEMS, particularly residential and commercial, calculate electricity 

loads conditional on the CDD and HDD variables along with economic inputs and the embodied technical 
efficiency in the stock of energy using equipment and structures. The load is allocated on what are called “load 
curves.” They illustrate the relationship of power consumption/supply during sub-periods of the period covered. 
This can be broken out be season, day of the week, and time of day. 
 

Our hypothesis was that warmer weather would change the annual pattern or shape of the load from 
winter to summer. In addition, the implied daily load could change more toward peaking periods. This was 
observed in the short-run models. Higher temperatures will reduce residential and commercial demand for space 
heating in the winter and increase the demand for space cooling in the summer. The former is typically supplied 
by fossil fuels while the later is almost exclusively provided by electricity.  The impact could lead to greater 
relative peaking capacity needs, particularly in the summer. 
 
Table 3.1.2 presents the results from the Comparison for PJM (MAAC) Summer Load Slice with warming 
climate change scenario. The first four columns categorize the nine slices of the load curve. Load groups 7,8, 
and 9 refer to the midday, morning and evening, and night-time hours respectively. These are the hours 8-18, 6-
7 and 19-24, and 1-5 respectively. There is a further breakdown by load group into three segments relating to 
the percent of load expected in each group. The breakdown is into top 1% or peak load in the group, the next 
33%, and finally the 66% lowest expected load in each (time) group. These are the three load segments 1,2, and 
3 respectively. Column four presents the total number of hours for the summer load in load slice. 
 
The load in Gigawatts for 2004 is given in column 5 followed by the NEMS reference projection for 2025 and 
then the projection for 2025 in the climate change scenario. This is followed by the percent change in the loads 
in 2025 from the 2004 in the next two columns. The percent increase over the NEMS reference case by load 
slice for the climate warming scenario. The last two columns show the annual percent increase in loads by for 
the NEMS and warming scenarios from 2004. 
 
The impact of temperature warming in the summer scenario had two important effects. First, average load 
demand is about 2.7 percent higher in the summer months than in the NEMS reference case. Second, the load 
demand is not proportionately higher by load slice. Peak demand was 5.4 percent higher in the climate warming 
scenario. Thus, the results suggest an important impact on the load shape. Climate change will have a 
disproportionate effect on load in the peak periods in each load group. This may be exactly the periods when 
ozone is likely to be more of a problem. Figure 3.1.7 illustrates the impacts in a bar chart with three bars in each 
section showing the 2004 load, 2025 NEMS reference load, and the 2025 climate change scenario. 
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Table 3.1.2 

 

 
 
 

Summer Load Slice Comparison for PJM (MAAC) 

    Load GigaWatts Percent Change 
from 2004 

Annual Percent 
Change 2004

Slice Load 
Group 

Load 
Segment 

Hours 2004 Reference 
2025 

Warmer 
2025 

Reference Warmer 

Percent 
Increase 

Over 
Reference 

Case 
Reference Warmer

1 7 1 10.1 52.5 73.1 77.08 39.19% 46.68% 5.38% 1.59% 

2 8 1 7.4 49.5 65.8 69.05 32.75% 39.41% 5.02% 1.36% 

3 7 2 334.0 45.3 64.5 66.84 42.45% 47.70% 3.68% 1.70% 

4 8 2 242.9 41.9 55.6 57.36 32.80% 37.04% 3.19% 1.36% 

5 7 3 667.9 37.6 53.1 54.58 41.05% 44.99% 2.79% 1.65% 

6 9 1 4.6 37.2 48.1 49.10 29.45% 32.01% 1.98% 1.24% 

7 8 3 485.8 33.0 43.0 43.82 30.08% 32.71% 2.02% 1.26% 

8 9 2 151.8 30.8 39.6 40.31 28.75% 30.97% 1.72% 1.21% 

9 9 3 303.6 26.8 34.5 34.98 28.87% 30.78% 1.48% 1.22% 

           

2004 Load is an estimate for the base year of the Annual Energy Outlook 2005 Source: EIA 

Reference 2025 Load is the Reference Case for the Annual Energy Outlook 2005 Source: EIA 
Warmer 2025 Load is an estimate for the impact of an increase in CDD for PJM (MAAC) region. The 30 year population 
weighted average was about 800. The scenario considers a case where the average of the 5 warmest years in the region is 
used. The estimate was 950. 

Acknowledgements: John Cymbalsky (EIA), Laura Martin (EIA), and Frank Morra (Booz Allen Hamilton) 
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Figure 3.1.7
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Section 3.2 The RSTEM Description and Temperature Elasticities 
  
 A second model, also from EIA, the Regional Short-Term Energy Model (RSTEM) estimates regional 
electricity consumption by sector was used as a complement to the analysis. It is a short-term econometric 
forecasting model by region and sector and is part of EIA’s new Regional Short Term Energy Outlook. While 
the forecasting model is focused on a horizon of 1 quarter to two years, the electricity consumption model is a 
dynamic one. Thus long-run price, income, cooling degree day and heating degree day elasticities can be 
calculated. The temperature sensitivities from this model can be roughly compared with the long-run model 
results from the NEMS. 

 We developed this model with the support of David Costello, Office of Energy Markets and End Use 
(EMEU), EIA, U.S. Department of Energy. We realized the complementary nature of this research on the EPA 
STAR grant. The temperature sensitivities from this model can be roughly compared with the long-run model 
results from the NEMS. Below we 1) briefly describe the econometric issues, 2) summarize the sector specific 
models, 3) provide detailed descriptions of the residential and commercial equations, and 4) present the short-
run and long run elasticity estimates. The data for the model is briefly described in Appendix 3. 

Section 3.2.1 Econometric Modeling Issues 

 The time series energy-econometric consumption models are designed to provide analytical and 
forecasting support by the nine U.S. Census Regions and four particular states (California, Florida, New York, 
and Texas). Sectoral electricity demand equations are developed for the residential, commercial, and industrial 
sectors. The demand equations are based on time series energy econometric techniques. The specifications 
address issues related to dynamics, stationarity, integration, cointegration, seasonality, and structural breaks. 
The consumption equations are aggregated into regional models and nationally by sector.  

 Figures 3.1.8 present the monthly (population weighted) CDD and HDD values for the period 1990-
2004. The residential and commercial consumption loads per month per day are provided in Figure 3.1.9 
respectively. There are clear seasonal peaks in the two series. In addition, the data show the impact of trends 
related to economic activity, population growth, and energy consumption. Also, the commercial sector data 
illustrate the potential for fluctuations due to economic activity.  

 The RSTEM_EC were developed using the principles of the general-to-specific modeling approach 
advocated by Hendry (1986a, 1986b, 1993, 1995, and 2000). The general-to-specific modeling approach is a 
relatively recent strategy used in econometrics. (See Appendix 4.) It attempts to characterize the properties of 
the sample data in simple parametric relationships, which remain reasonably constant over time, account for the 
findings of previous models, and are interpretable in an economic and financial sense. Rather than using 
econometrics to illustrate theory, the goal is to "discover" which alternative theoretical views are tenable and 
test them scientifically.  
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Section 3.2.2 Summary of Sector Specific Models 
 
 Residential Demand:  There are economic, seasonal, and trend issues which need to be addressed in the 
residential models. The primary determinants of residential electricity demand in a region are: occupied housing 
units or households; share of occupied housing units or households using electricity as the primary energy 
source for heating; share of occupied housing units or households with installed air conditioning; cooling 
degree-days; heating degree-days; real delivered residential per-unit electricity charges; real personal income 
per household.   
 
 Commercial Demand:  The primary determinants of commercial electricity demand in a region are: 
employment, hours worked or real wage disbursements in commercial employment (as a proxy for commercial 
sector output); cooling degree-days; heating degree-days; real commercial-sector per-unit delivered electricity 
charges; self-generating capacity in the commercial sector.  Autonomous trends in commercial electricity use 
intensity are additional factors in commercial demand related to commercial building shell efficiencies, average 
commercial floor-space per unit of output, and penetration of electricity-using equipment in commercial 
establishments.   
 
 Industrial Demand:  The primary determinants of industrial electricity demand in a region are: 
employment, hours worked or real wage disbursements in industrial employment or industrial output as 
measured by the Federal Reserve Board; real industrial-sector per unit delivered electricity charges; cooling 
degree-days; heating degree-days; self-generating capacity in the industrial sector.  Autonomous trends in 
industrial electricity use intensity are additional factors in industrial demand related to energy efficiency trends 
in industrial processes and equipment, shifts in regional industrial output patterns among industry sectors of 
varying levels of electricity use intensity per unit of output, and penetration of general electricity-using 
equipment in industrial establishments. 
 
 Other Demand:  Other electricity demand in a region, which consists of electricity sales not designated 
as residential, commercial or industrial (municipal lighting and other general service as well as transportation, 
for examples), is assumed to be determined by general growth of economic activity in the region, as measured 
by gross regional product or other aggregate activity measures. Also seasonal factors are important determinants 
of demand in certain regions. 
 
 The above-listed demands for electricity relate to retail sales, or sales distributed by local distribution 
companies, either for own account or for the account of independent service providers.  Two other demand 
components are: electricity generated by and consumed by an entity or facility, such as an industrial 
establishment (with either combined heat and power (CHP) or electric-only generating capability) or a 
commercial facility such as a University or other non-industrial facility; electricity generated by one entity and 
delivered directly to another entity, by-passing retail distribution.  The bulk of such non-retail demand is in the 
industrial sector (approximately 2 percent in 2002).  In RSTEM, the non-retail component of electricity demand 
is treated separately and at the national level. 
 
 The consumption equations are specified in terms of MWHR per day per month. The generic regional 
model with the sectoral components or modules can be represented as:  

���������¶
����������
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 There are four estimated equations and one identity for total consumption. The equations are time series 
models. For example, the A(L) terms can imply  both regular and seasonal autoregressive components. Lags of 
the right hand side variables are included in the specification as well. Appendix 3 contains a glossary of the 
variables in the specification.  
 
Section 3.2.3 Detailed Descriptions of the Residential and Commercial Equations 
 
 The residential electricity consumption demand models are estimated using ordinary least squares. 
Aggregate sales in BkWh in a month are divided by the number of days in the month. The dependent variable is 
in terms of daily consumption (EXRCP) per household (QHALLC). These two transformations are based on 
intuitive reasoning and help control for heteroscedasticity in the monthly models. Households are thought to 
reflect the number of customers. A different equation is estimated for each region and the particular states. They 
have similar features, but vary for reasons related to geographical location, weather, and access to substitute 
energy sources like natural gas and heating oil. Below is a generic description of the residential consumption 
per household per day equations. 
 
 The residential consumption series has two distinctive time series properties in most regions. There are 
two seasonal cycles per year, one for cooling in the summer and the other for heating in the winter. The nature 
of the cycles and their peaks differ. In addition, there appears to be some trend in the consumption series. The 
specification of the RSTEO-EC equations differs from the current aggregate level STEO model in that seasonal 
dummy variables and a deterministic time trend are not included in the equations. Consumption per household 
per day is transformed into natural logarithms. 
 
 The residential consumption series is non-stationary. There is a question of whether the series are 
integrated and what the appropriate specification is. This version of the RSTEM treats the order integration as 
following an annual seasonal cycle6. The data is first transformed into natural logarithms and then the first 
difference at the annual frequency is calculated. This appears to produce a stationary series for modeling. 
 
 The consumption series are obtained from reported monthly sales, but are not strictly related to 
consumption in the month they are reported. Reported sales are based on an as- reported basis by billing cycle 

                                                 
6 Unit root tests for a sample of series were performed at both the zero and annual frequency were performed and 
appear to support this specification. A more thorough analysis of the data is expected in future versions of the 
model. 
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rather than calendar months. Thus a particular month’s electricity sales volume represents consumption by 
customers for the current month and part for the previous month. 
 
 Electricity prices per kWh (ESRCU) are entered in the models with a one-month lag to more accurately 
reflect the prices that consumers know they paid. The data is first transformed into natural logarithms and then 
the first difference at the annual frequency is calculated. Several regions had a sizable portion of households 
using natural gas (NGRCU) for heating and hot water use based on the Residential Energy Consumption 
Survey.  This survey also shows that heating oil (D2RCUUS) was an important heating fuel in the Northeast. 
The prices of natural gas and heating oil were tested in these equations. The Consumer Price Index (CPI2000) is 
used to deflate the retail price series unless otherwise specified, to remove inflation effects. 
 
 Population weighted cooling degree-day and heating degree-day series, ZWCD and ZWHD 
respectively, are used to capture weather effects. They are incorporated in the equation specification in three 
ways. First, the annual change in the number of cooling and heating degree-days is consistent with the annual 
difference of the dependent variable. The actual level is considered as well. In addition, the degree-day 
measures are interacted with the price series for several regions to capture the joint sensitivity to these series. 
 
 Household real disposable income (PY) effects on a monthly basis are assumed to be small, if not zero. 
The nominal disposable personal income series is deflated by the Consumer Price Index (CPI2000). Annual 
changes in income per household were included in the models, but for the most part did not provide explanatory 
power. Also, real disposable income is included in a budget share term to capture a possible long run or error 
correction component to consumption demand. 
  
 The specifications for every region included an electricity budget share variable. The budget share is 
calculated as the monthly household electric bill divided by the household disposable income, (EXRCP* 
ESRCU* ZSAJQUS)/PY. Consumption per day is rescaled by the days per month to obtain total sales. This 
expression is appealing from economic theory. Also, it is consistent with an error correction representation for 
integrated series and the concept of cointegration. Households have a desired or equilibrium budget share 
allocated to electricity services. If expenditures exceed that level or share, because of higher prices or a fall in 
income, this will slow down the growth in consumption of electricity. The budget share measure was considered 
at the one- month and one-year lag; in some cases the change in budget share over the previous year provided a 
valid simplification. The annual lag appears to be the more important in general. 
 
 Monthly dummy variables are not used in the residential consumption models, because the effects are 
accounted for through the annual differencing and use of the cooling degree-day and heating degree-day 
variables. However, dummy variables have been incorporated to capture outlier effects from severe weather and 
possible measurement error in the data. 
 
 The commercial electricity consumption demand models are estimated using ordinary least squares. 
Aggregate sales in X BkWh are divided by the number of days in the month. The dependent variable is in terms 
of daily consumption (EXCMP=EXCM/ZSAJQUS). A different equation is estimated for each region and the 
individual states. They have similar features, but will vary for reasons related to geographical location, 
economic activity, weather, and access to substitute energy sources like natural gas. Below is a generic 
description of the commercial consumption per day equations. 
 
 The primary determinants of commercial electricity demand in a region are: employment and or real 
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wage disbursements in commercial employment (as a proxy for commercial sector output); cooling degree-
days; heating degree-days; real industrial-sector per-unit delivered electricity charges, and natural gas prices. 
 
 The commercial consumption series has two distinctive time series properties in most regions similar to 
the residential series, but perhaps not as pronounced. There are two seasonal cycles per year, one for cooling 
and the other for heating in the winter. The nature of the cycles and their peaks differ. In addition, there appears 
to be some trend in the consumption series.  
 
 The commercial consumption series are non-stationary. There is a question of whether the series are 
integrated and what the appropriate specification is. This version of the RSTEM-EC treats most regions with the 
order of integration as following an annual seasonal cycle7. The data is first transformed into natural logarithms 
and then the first difference at the annual frequency is calculated. This appears to produce a stationary series for 
modeling.  There may be 1-2 exceptions where only a first difference is used. 
 
 Real Electricity prices per kWh (ESICU) are entered in the models with a one-month lag to more 
accurately reflect the prices that consumers know they paid. The data is first transformed into natural logarithms 
and then the first difference at the annual frequency is calculated. Several regions had a sizable portion of 
commercial firms using natural gas (NGRCU) according to the Commercial Buildings Energy Consumption 
Survey. The retail energy price series are deflated by the Consumer Price Index (CPI2000) or specified in 
relative terms. 
 
 Population weighted cooling degree-day and heating degree-day series, ZWCD and ZWHD 
respectively, are used to capture weather effects. They are incorporated in the equation specification in three 
ways. First the annual change in the number of cooling and heating degree-days is consistent with the annual 
difference of the dependent variable. The actual level is considered as well. In addition, the degree-day
measures are interacted with the price series for several regions to capture the joint sensitivity to these series. 
 
 There is no direct economic commercial or service sector revenue or expenditure series. The level of 
employment in the private service sector (EESPPC) serves as a proxy for the level of economic activity in the 
region.  Electricity consumption per worker (EXCMP/EESPPC) is used to capture trends and/or correct for 
deviations in consumption from “equilibrium” consumption. Another indicator for “equilibrium” consumption 
is the ratio of electricity expenditures to labor costs ((EXCMP*ESCMU*ZSAJQUS)/ CWDSPPC). This 
measure attempts to represent firms’ concerns over relative input costs. These expressions are appealing from 
economic theory. Also, they may be consistent with an error correction representation for integrated series and 
the concept of cointegration. Both measures were considered in the general model specifications, but often only 
one was necessary in the specific models. The variables were entered with a one-year lag or as the change over the 
past year from the previous month. 
 
 
Section 3.2.4 The Short-run and Long-run Elasticity Estimates. 
 
The model specifications range from simple autoregressive components with explanatory variables to seasonal 
differenced models with autoregressive components and explanatory variables. The residential models 

                                                 
7 Unit root tests for a sample of series were performed at both the zero and annual frequency were performed and 
appear to support this specification. A more thorough analysis of the data is expected in future versions of the 
model. 
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dependent variable is in terms of household electricity consumption per day. The commercial sector dependent 
variable is in terms on consumption per day. Below is a generic specification example in seasonal differences 
with autoregressive components at lags one and the seasonal lag. 
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The x variables are explanatory variables like prices, economic activity like income, weather data 
like heating-degree day and cooling-degree day, and other deterministic variables. The short-run 
elasticity for an explanatory variable like cooling degree days is given by 
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The long-run elasticity for cooling degree days is equal to 
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Tables 3.2.1 and 3.2.2 present the price and income elasticity estimates and the cooling-degree day and heating-
degree day elasticities respectively. Results for the Mid-Atlantic region, East North Central Region, and South 
Atlantic region are provided, because the include the PJM, ECAR, and SERC regions used in the EPA study 
respectively. 
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The signs on the elasticities are as hypothesized and conform to the first and second laws of demand. That is the 
short-run elasticities are smaller than the long-run elasticities. In the short-run households and businesses cannot 
immediately respond to an increase in CDD and HDD, because their stock and housing and building shell 
efficiency and appliances are given. As time progresses however, they adjust their housing and building stocks 
and energy using appliances stocks. We note that the CDD effects appear larger in the Mid-Atlantic and South 
Atlantic region than in the East North Central region. This is likely due to the greater summer cooling needs and 
lower heating needs with a warming temperature. 
 

Table 3.2.1 

Regional STEO Elasticity Estimates 

Region Price Elasticities Income Elasticities 

 Short-run  Long-run  Short-run  Long-run  

East North Central -0.02 -0.06 0.34 1.04 

Mid-Atlantic  -0.03 -0.59 0.32 0.72 

South Atlantic -0.05 -0.22 0.11 0.47 

 
 

Table 3.2.2 

Regional STEO Elasticity Estimates 

Region Cooling Degree Day Elasticities Heating Degree Day Elasticities 

 Short-run  Long-run  Short-run  Long-run  

East North Central 0.05 0.23 0.18 0.37 

Mid-Atlantic  0.33 0.56 0.13 0.28 

South Atlantic 0.04 0.64 0.11 0.19 
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Appendix 1: Summer Hypotheses 

 
logLoad(i) C Tue Wed Thu Fri Sat Sun Holiday Jul Au g Sep 
Jun°F Jul°F Aug°F Sep°F
 Jun°F^2 Jul°F^2 Aug°F^2 Sep°F^2 
 Jun°F^3 Jul°F^3 Aug°F^3 Sep°F^3 
logLoad(i-1) logLoad(i-2) logLoad(i-3) logLoad(i-24 ) 

Restricted Models Specification
H0:1 There are no Day or Holiday effects Tue = Wed = Thu = Fri = Sat = Sun = Holiday = 0
H0:2 There are no Weekend or Holiday effects Sat = Sun = Holiday = 0
H0:3 There are no Weekend effects Sat = Sun = 0
H0:4 There are no Sunday or Holiday Effects Sun = Holiday = 0
H0:5 There are no Weekend effects; Weekday effects are a ll the same Sat = Sun = 0; Tue = Wed = Thu = Fri
H0:6 There are no Month effects Jul = Aug = Sep = 0
H0:7 There are no Day or Holiday or Month effects Tue = Wed = Thu = Fri = Sat = Sun = Holiday = Jul =  Aug = Sep = 0
H0:8 There are no Weekend or Holiday or Month effects Sat = Sun = Holiday = Jul = Aug = Sep = 0
H0:9 There are no Weekend or Month effects Sat = Sun = Jul = Aug = Sep = 0
H0:10 There are no Sunday or Holiday or Month Effects Sun = Holiday = Jul = Aug = Sep = 0
H0:11 There are no Weekend or Month effects; Weekday effe cts are all the same Sat = Sun = Jul = Aug = Sep = 0; Tue = Wed = Thu = Fri
H0:12 There are no Weekday effects Tue = Wed = Thu = Fri = 0
H0:13 There are no Weekday or Month effects; Weekend and Holiday effects are the same Tue = Wed = Thu = Fri = Jul = Aug = Sep = 0; Sat = Sun = Holiday
H0:14 There are no Temp Level effects Jun °F = Jul °F = Aug °F = Sep °F = 0
H0:15 There are no Temp Level effects for June or Septemb er Jun °F = Sep °F = 0
H0:16 There are no Temp Level effects for June Jun °F = 0
H0:17 There are no Temp Level effects for September Sep °F = 0

H0:18 There are no Temp Level effects for September;  Temp Level effects for other months are all equal
Sep °F = 0; Jun °F = Jul °F = Aug °F

H0:19 There are no Temp Level effects for June; Temp Leve l effects for other months are all equal Jun °F = 0; Jul °F = Aug °F = Sep °F

H0:20
There are no Temp Level effects for June or Septemb er; Temp Level effects for July and August are 
equal Jun °F = Sep °F = 0; Jul °F = Aug °F 

H0:21 Temp Level effects for June and September are equal; Temp Level effects for July and August are e qual
Jun °F = Sep °F; Jul °F = Aug °F 

H0:22 Temp Level effects for all months are equal Jun °F = Jul °F = Aug °F = Sep °F
H0:23 There are no Temp Squared effects Jun °F^2 = Jul °F^2 = Aug °F^2 = Sep °F^2 = 0
H0:24 There are no Temp Squared effects for June or Septe mber Jun °F^2 = Sep °F^2 = 0
H0:25 There are no Temp Squared effects for June Jun °F^2 = 0
H0:26 There are no Temp Squared effects for September Sep °F^2 = 0

H0:27 There are no Temp Squared effects for Septembe r; Temp Squared effects for other months are all eq ual
Sep °F^2 = 0; Jun °F^2 = Jul °F^2 = Aug °F^2

H0:28 There are no Temp Squared effects for June; Te mp Squared effects for other months are all equal
Jun °F^2 = 0; Jul °F^2 = Aug °F^2 = Sep °F^2

H0:29
There are no Temp Squared effects for June or Septe mber; Temp Squared effects for July and August 
are equal Jun °F^2 = Sep °F^2 = 0; Jul °F^2 = Aug °F^2 

H0:30
Temp Squared effects for June and September are equ al; Temp Squared effects for July and August are 
equal Jun °F^2 = Sep °F^2; Jul °F^2 = Aug °F^2 

H0:31 Temp Squared effects for all months are equal Jun °F^2 = Jul °F^2 = Aug °F^2 = Sep °F^2

H0:32 There are no Temp Level or Squared effects
Jun °F = Jul °F = Aug °F = Sep °F = Jun °F^2 = Jul °F^2 = Aug °F^2 = Sep 
°F^2 = 0

H0:33 There are no Temp Level or Squared effects for June  or September Jun °F = Sep °F = Jun °F^2 = Sep °F^2 = 0
H0:34 There are no Temp Level or Squared effects for June Jun °F = Jun °F^2 = 0
H0:35 There are no Temp Level or Squared effects for Sept ember Sep °F = Sep °F^2 = 0

H0:36 There are no Temp Level or Squared effects for  September; Temp effects for other months are all e qual
Sep °F = 0; Jun °F = Jul °F = Aug °F; Sep °F^2 = 0;  Jun °F^2 = Jul °F^2 = 
Aug °F^2

H0:37 There are no Temp Level or Squared effects for  June; Temp effects for other months are all equal
Jun °F = 0; Jul °F = Aug °F = Sep °F; Jun °F^2 = 0;  Jul °F^2 = Aug °F^2 = 
Sep °F^2

H0:38
There are no Temp Level or Squared effects for June  or September; Temp effects for July and August are  
equal

Jun °F = Sep °F = 0; Jul °F = Aug °F; Jun °F^2 = Se p °F^2 = 0; Jul °F^2 = 
Aug °F^2 

H0:39 Temp effects for June and September are equal;  Temp effects for July and August are equal
Jun °F = Sep °F; Jul °F = Aug °F; Jun °F^2 = Sep °F ^2; Jul °F^2 = Aug 
°F^2 

H0:40 Temp effects for all months are equal
Jun °F^2 = Jul °F^2 = Aug °F^2 = Sep °F^2; Jun °F^2  = Jul °F^2 = Aug 
°F^2 = Sep °F^2

H0:41 No Cubic Effects Jun °F^3 = Jul °F^3 = Aug °F^3 = Sep °F^3 = 0
H0:42 No Jun/Sept Cubic Effects Jun °F^3 = Sep °F^3 = 0
H0:43 Cubic Effects for Jun = Sep; Jul = Aug Jun °F^3 = Sep °F^3; Jul °F^3 = Aug °F^3
H0:44 Cubic Effects are the same across all months Jun °F^3 = Jul °F^3 = Aug °F^3 = Sep °F^3 

H0:45 No Squared/Cubic Effect
Jun °F^2 = Jul °F^2 = Aug °F^2 = Sep °F^2 = Jun °F^ 3 = Jul °F^3 = Aug 
°F^3 = Sep °F^3 = 0

H0:46 No Jun or Sep Squared/Cubic Effects Jun °F^2 = Sep °F^2 = Jun °F^3 = Sep °F^3 = 0

H0:47 Squared/Cubic Effects for Jun = Sep; Jul = Aug
Jun °F^2 = Sep °F^2; Jul °F^2 = Aug °F^2; Jun °F^3 = Sep °F^3; Jul °F^3 
= Aug °F^3

H0:48 Squared/Cubic Effects are the same in all mont hs
Jun °F^2 = Jul °F^2 = Aug °F^2 = Sep °F^2; Jun °F^3  = Jul °F^3 = Aug 
°F^3 = Sep °F^3 

H0:49 No Level/Squared/Cubic Effects
Jun °F = Jul °F = Aug °F = Sep °F = Jun °F^2 = Jul °F^2 = Aug °F^2 = Sep 
°F^2 = Jun °F^3 = Jul °F^3 = Aug °F^3 = Sep °F^3 = 0

H0:50 No Jun or Sep Level/Squared/Cubic Effects Jun °F = Sep °F = Jun °F^2 = Sep °F^2 = Jun °F^3 = Sep °F^3 = 0

Unrestricted Model
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Appendix 2: Winter Hypotheses 

 
logLoad(i) C Tue Wed Thu Fri Sat Sun Holiday Feb Ma r Dec 
Jan°F Feb°F Mar°F Dec°F 
Jan°F^2 Feb°F^2 Mar°F^2 Dec°F^2 
Jan°F^3 Feb°F^3 Mar°F^3 Dec°F^3 
logLoad(i-1) logLoad(i-2) logLoad(i-3) logLoad(i-24 ) 

Restricted Models Specification
H0:1 There are no Day or Holiday effects Tue = Wed = Thu = Fri = Sat = Sun = Holiday = 0
H0:2 There are no Weekend or Holiday effects Sat = Sun = Holiday = 0
H0:3 There are no Weekend effects Sat = Sun = 0
H0:4 There are no Sunday or Holiday Effects Sun = Holiday = 0
H0:5 There are no Weekend effects; Weekday effects are a ll the same Sat = Sun = 0; Tue = Wed = Thu = Fri
H0:6 There are no Month effects Feb = Mar = Dec = 0
H0:7 There are no Day or Holiday or Month effects Tue = Wed = Thu = Fri = Sat = Sun = Holiday = Feb =  Mar = Dec = 0
H0:8 There are no Weekend or Holiday or Month effects Sat = Sun = Holiday = Feb = Mar = Dec = 0
H0:9 There are no Weekend or Month effects Sat = Sun = Feb = Mar = Dec = 0
H0:10 There are no Sunday or Holiday or Month Effects Sun = Holiday = Feb = Mar = Dec = 0
H0:11 There are no Weekend or Month effects; Weekday effe cts are all the same Sat = Sun = Feb = Mar = Dec = 0; Tue = Wed = Thu = Fri
H0:12 There are no Weekday effects; Weekend and Holiday e ffects are the same Tue = Wed = Thu = Fri = 0, Sat = Sun = Holiday
H0:13 There are no Weekday or Month effects; Weekend and Holiday effects are the same Tue = Wed = Thu = Fri = Feb = Mar = Dec = 0; Sat = Sun = Holiday
H0:14 There are no Temp Level effects Jan °F = Feb °F = Mar °F = Dec °F = 0
H0:15 There are no Temp Level effects for March or Decemb er Mar °F = Dec °F = 0
H0:16 There are no Temp Level effects for December Dec °F = 0
H0:17 There are no Temp Level effects for March  Mar °F = 0

H0:18 There are no Temp Level effects for December; Temp Level effects for other months are all equal
Dec °F = 0; Jan °F = Feb °F = Mar °F

H0:19 There are no Temp Level effects for March; Temp Lev el effects for other months are all equal Mar °F = 0; Feb °F = Mar °F = Dec °F

H0:20
There are no Temp Level effects for March or Decemb er; Temp Level effects for January and February 
are equal Mar °F = Dec °F = 0; Jan °F = Feb °F 

H0:21
Temp Level effects for March and December are equal ; Temp Level effects for January and February are 
equal Mar °F = Dec °F; Jan °F = Feb °F 

H0:22 Temp Level effects for all months are equal Jan °F = Feb °F = Mar °F = Dec °F
H0:23 There are no Temp Squared effects Jan °F^2 = Feb °F^2 = Mar °F^2 = Dec °F^2 = 0
H0:24 There are no Temp Squared effects for March or Dece mber Mar °F^2 = Dec °F^2 = 0
H0:25 There are no Temp Squared effects for March  Mar °F^2 = 0
H0:26 There are no Temp Squared effects for December Dec °F^2 = 0

H0:27 There are no Temp Squared effects for December ; Temp Squared effects for other months are all equ al
Dec °F^2 = 0; Jan °F^2 = Feb °F^2 = Mar °F^2

H0:28 There are no Temp Squared effects for March; T emp Squared effects for other months are all equal Mar °F^2 = 0; Jan °F^2 = Feb °F^2 = Mar °F^2 

H0:29
There are no Temp Squared effects for March or Dece mber; Temp Squared effects for January and 
February are equal Mar °F^2 = Dec °F^2 = 0; Jan °F^2 = Feb °F^2 

H0:30
Temp Squared effects for March and December are equ al; Temp Squared effects for January and 
February are equal Mar °F^2 = Dec °F^2; Jan °F^2 = Feb °F^2 

H0:31 Temp Squared effects for all months are equal Jan °F^2 = Feb °F^2 = Mar °F^2 = Dec °F^2

H0:32 There are no Temp Level or Squared effects
Jan °F = Feb °F = Mar °F = Dec °F = Jan °F^2 = Feb °F^2 = Mar °F^2 = Dec 
°F^2 = 0

H0:33 There are no Temp Level or Squared effects for Marc h or December Mar °F = Dec °F = Mar °F^2 = Dec °F^2 = 0
H0:34 There are no Temp Level or Squared effects for Dece mber Dec °F = Dec °F^2 = 0
H0:35 There are no Temp Level or Squared effects for Marc h  Mar °F = Mar °F^2 = 0

H0:36 There are no Temp Level or Squared effects for  December; Temp effects for other months are all eq ual
Dec °F = 0; Jan °F = Feb °F = Mar °F; Dec °F^2 = 0;  Jan °F^2 = Feb °F^2 = 
Mar °F^2

H0:37 There are no Temp Level or Squared effects for  March; Temp effects for other months are all equal
Mar °F = 0; Jan °F = Feb °F = Dec °F; Mar °F^2 = 0;  Mar °F^2 = Feb °F^2 = 
Dec °F^2

H0:38
There are no Temp Level or Squared effects for Marc h or December; Temp effects for January and 
February are equal

Mar °F = Dec °F = 0; Jan °F = Feb °F; Mar °F^2 = De c °F^2 = 0; Jan °F^2 = 
Feb °F^2 

H0:39 Temp effects for March and December are equal;  Temp effects for January and February are equal Jan °F = Feb °F; Mar °F^2 = Dec °F^2; Jan °F^2 = Fe b °F^2 

H0:40 Temp effects for all months are equal
Jan °F^2 = Feb °F^2 = Mar °F^2 = Dec °F^2; Jan °F^2  = Feb °F^2 = Mar 
°F^2 = Dec °F^2

H0:41 No Cubic Effects Jan °F^3 = Feb °F^3 = Mar °F^3 = Dec °F^3 = 0
H0:42 No Jan/Dec Cubic Effects Jan °F^3 = Dec °F^3 = 0
H0:43 Cubic Effects for Jan = Dec, Feb = Mar Jan °F^3 = Dec °F^3; Feb °F^3 = Mar °F^3
H0:44 Cubic Effects are the same across all months Jan °F^3 = Feb °F^3 = Mar °F^3 = Dec °F^3 

H0:45 No Squared/Cubic Effect
Jan °F^2 = Feb °F^2 = Mar °F^2 = Dec °F^2 = Jan °F^ 3 = Feb °F^3 = Mar 
°F^3 = Dec °F^3 = 0

H0:46 No Jan or Dec Squared/Cubic Effects Jan °F^2 = Dec °F^2 = Jan °F^3 = Dec °F^3 = 0

H0:47 Squared/Cubic Effects for Jan = Dec; Feb = Mar
Jan °F^2 = Dec °F^2; Feb °F^2 = Mar °F^2; Jan °F^3 = Dec °F^3; Feb °F^3 
= Mar °F^3

H0:48 Squared/Cubic Effects are the same in all mont hs
Jan °F^2 = Feb °F^2 = Mar °F^2 = Dec °F^2; Jan °F^3  = Feb °F^3 = Mar 
°F^3 = Dec °F^3 

H0:49 No Level/Squared/Cubic Effects
Jan °F = Feb °F = Mar °F = Dec °F = Jan °F^2 = Feb °F^2 = Mar °F^2 = Dec 
°F^2 = Jan °F^3 = Feb °F^3 = Mar °F^3 = Dec °F^3 = 0

H0:50 No Jan or Dec Level/Squared/Cubic Effects Jan °F = Dec °F = Jan °F^2 = Dec °F^2 = Jan °F^3 = Dec °F^3 = 0

Unrestricted Model
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Appendix 3. RSTEM Data Sources and Descriptions  

The historical energy data used to estimate the model come primarily from the IMDS electronic database. IMDS 
merges data regularly reported in several EIA publications: Petroleum Supply Monthly, Petroleum Marketing 
Monthly, Electric Power Monthly, Natural Gas Monthly, and Monthly Energy Review. Because of data limitations 
there are inconsistencies in the level of dis-aggregation of each type of fuel. For example, electricity and natural gas 
demands are represented by market sector, but petroleum products are generally represented only as national totals 
or for a combination of sectors (distillate and residual fuel oil are exceptions). Market-level data are available for 
the regulated industries (electricity and natural gas) while product-level data are available for the petroleum product 
markets, particularly for data frequencies higher than annual.  

These energy price and volume data are supplemented by data from outside sources; the most common are listed 
below.  

• Employment and Earnings, Bureau of Labor Statistics, U.S. Department of Labor.  
• Industrial Production, Board of Governors, U.S. Federal Reserve System.  
• Monthly Labor Review, Bureau of Labor Statistics, U.S. Department of Labor.  
• Monthly State, Regional, and National Heating/Cooling Degree-Days Weighted by 

Population, National Oceanic and Atmospheric Administration, U.S. Department of 
Commerce.  

• National Income and Product Accounts of the United States, Bureau of Economic 
Analysis, U.S. Department of Commerce.  

• Survey of Current Business, Bureau of Economic Analysis, U.S. Department of 
Commerce.  

Most of the data sources provide monthly data and are used directly. Quarterly data are 
interpolated into monthly series. These data are primarily for macroeconomic variables in the 
national income and product accounts and gross state domestic product accounts. 
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Simple Glossary of Terms 

Acronyms Description 
EXRCP Residential electricity consumption per day 

EXCMP Commercial electricity consumption per day 

EXICP Industrial electricity consumption per day 

EXOTP Other electricity consumption per day 

EXTCP Total electricity consumption per day 

HH Number of households 

ESRCU Residential retail electricity per kWh 

ESCMU Commercial retail electricity per kWh 
ESICU Industrial retail electricity per kWh 
ESOTU Other retail electricity per kWh 

PY Disposable personal income 

CPI Consumer price index: urban households, Base 2000 

PrO Price of home heating oil, $/gallon 

EShr Electricity expenditure budget share 

Cshr Electricity cost per labor costs 

EESPP Number of Employees: Commercial or Industrial 

GSP Gross State Product: Region-wide or Industrial 

IP Industrial Production: Electricity Weighted 

CW Wages and Salaries: Commercial or Industrial 
WPI Wholesale Price Index, Base 2000 
PNG Price of Natural Gas 

HDD Heating degree-days per month 

CDD Cooling degree-days per month 
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Appendix 4: The General-to-Specific Modeling Approach 

 The General to Specific Approach follows a set of principles laid out by Haavelmo in 19448. He introduced 
econometricians to the general principles of analyzing statistical models instead of applying methods. 
 
The implication of applying statistical models instead of applying methods is that the researcher should use models 
based on systems of equations. VARs have a number of advantages in this regard. They allow for dynamic 
interactions and correlations among variables which is the basis of applied times econometrics.  Social scientists 
definition struggle, because their data does not conform to the hypothetical case knowing the true data generating 
process. Their data has been collected or simulated in controlled experiments. 
 
The applied econometrician must use a probability approach to their craft. We start by assuming a probability 
structure to the data. This is effectively conjecturing the existence of a data generating process (hereafter DGP).
reality the DGP is unknown. The general principles suggest an iterative approach or progressive research strategy.

• Conjecture the DGP 
• Develop the associated probability theory 
• Use theory for modeling the empirical evidence 
• Revise the starting point when the results do not match consistently. 

 
 The strategy involves recent development in econometrics known as the Theory of Reduction which 
motivates the General-to-Specific Approach. 
 

 
 

                                                 
8 Much of the discussion below of Haavelmo’s general principles has benefited from K. Juselius’ applied econometrics book 
manuscript, chapter 1 Introduction. Oxford University Press expects to publish the book in 2006. 

Approaches and or Methodology for Research 

Economists Statisticians 

Formulate an economically well-specified 

model as the empirical model. 

Formulate a statistically well-specified 

model for the data. 

Apply statistical techniques to estimate the 

parameters. 

Analyze the statistical model to answer the 

economic questions of interest. 

Methodology for Research 

Use statistics passively as a tool to some 

derived results. 

Statistical model is taken seriously and 

used actively as a means of analyzing the 

underlying DGP of the economic 

phenomenon. 
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Empirical models are at best approximations of the true data generating process (DGP). The econometric model 
should exhibit certain desirable properties that render it a valid representation of the true DGP. Hendry (1995) and 
Mizon (1995) suggest the following six criteria according to the General-to-Specific or LSE methodology.  
 

1. There are identifiable structures in the model that are interpretable in light of economic theory. 
2. The residuals must be white noise for the model to be a valid simplification of the DGP. 
3. The model must be admissible on accurate observations. For example nominal interest rates and prices 

cannot be negative. 
4. The conditioning variables are at least weakly exogenous for the parameters of interest in the model. 

Forecasting models require strong exogeneity, while policy models require super exogeneity. 
5. The parameters of interest must be constant over time and remain invariant to certain classes of 

interventions. This relates to the purpose of the model in the previous criteria. 
6. The model must be able to explain the results from rival models; it is able to encompass them.  

 
 A model that has these six properties is said to be congruent. 
 
 The sector demand model specification begins by analyzing the time series properties of the energy and 
economic variables. Autocorrelation functions and partial autocorrelation functions of the series in (log) levels, 
first differences, and annual differences are examined to look for dynamic patterns and integration. Plots of the 
series in (log) levels, first differences, annual differences, and monthly seasonal stacks are examined for trends, 
seasonal effects, shifts in the data generating process, and outliers. Unit root tests are conducted to test for 
(seasonal) integration and cointegration. The principles and approach have not been fully implemented in the 
RSTEO modeling effort to-date because of time and resource constraints. But the work is on-going. 

 


