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Summary of Findings

We investigated climate change-driven effects @ttekity demand.The research focused on the estime
the impact of higher temperatures on electricitnstomption using hourly data and annual data.
Pennsylvania-New Jersey-Maryland (PJM) Indepen8gstem Operating (ISO) or mid-Atlantic counebior
of the North American Electric Reliability councilas primary area for the study. Additional data was(
from the East Central Area Reliability (ECAR) anau$heastern Electric Reliability council (SERC).

Scenarios were constructed to present the impagtdtlegree Fahrenheit increase in temperaturleert4sn
and long-run models were used in generating thessues.

The short-run models were constructed to estinteesénsitivity of the daily load curte hourly temperatu
for all ten load regions in the PJM separat&lye responses are conditional on a given stockegfreeity using
equipment, building shell efficiencies, stock okadlicity generation facilities, and transmissiogtwork.
Simulations were run to examine the effect of #mgerature increase. These short-run modelssgreciall
useful fortheir detail and relating peak loads and changethénload curve or human response in tern
electricity demand.

The long-run model results are based on a “gerezrallibrium approach’for the entire U.S. The Natior
Energy Modeling System (NEMS) which the Energy tnfation Administration (EIA) uses in maki
projections to 2025-2030 was the primary modelthe NEMS, hoseholds and firms can adjust stocl
electricity using equipment and building shell @fncies in response to relative prices, econowtigiy, anc
technology choices. Similarly, the electric utilégctor adjust the mix and stock of generatinglifees ant
transmission network in response to expected dememdtive prices of input sources, technology,
regulatory environment.

The output from the short-run and long-run consionpgnodels in terms of load projections and elastisierv
as the inputs to supply side models which allocatdispatch the electricity from the generatiorcktand mixto
meet the load. Given the dispatch assumptions,ntioakel will projectwith electricity sector emissions, witt
focus on NQ. Climate changevill alter the level and timing of electricity demds, as well as the ther
efficiency of electricity generating units. Wighgiven capital stock of generating plant (shont analysis), th
will change their operations and emissions. Hwughe presence of seasonal or annual emissions cajssjan
might then increase during the warmest days wheneepisodes are most likely to occur. In the lamg the
mix and amounts of various types of generationrteldyies will adjust, and if clima change occurs, the resul
generation plant will be different than if climatBange does not occur. This has further imptiaatifor th

Final Report EPA Weather Effects on Electricity Hea Page 1 of 48



timing and amount of emissions. This portiontaf tesearch project developed and demonstratechdseth
obtaining temporal and spatial distributions of N&nissions from power plants, and for quantifyimg ¢ffects ¢
climate change scenarios on those distributions.

In Section 1 of this report we explain the methodgland models used in the short-rinoutly) responses
electricity consumption to changes in temperatBeetion 2, contains results on the potential langimpactsof
temperatureon electricity loads. Two different modeling apgrbes were used. The first is based on the
Energy Iformation Administration’s National Energy Modelir@ystem (NEMS) and the second is based
regional econometric model by sector of electrigiynsumption. In the next section, we provide a b
background on the analyses of weather effectsemtrigity consumption. In Section 4, tHatabase programs u:
in the analysis are briefly described so that tlegkwnay be replicated. The final section providdsepexplici
accomplishments of this research projects. All nigtes provided in electronic format on a CD bgtien.

The major findings concerning the short- and lomg-effects of climate change on electricity loade
summarized as follows:

1. Short-run Effects of Weather on Electricity Loads

Hourly forecasting models were built andrameterized using approximately eight years’ waf
hourly temperature and load data for the ten utdibmpanies of the PJM control area. Two seasoh&
models were developedmmer and Winter) using deterministic variableéy, Month, Holiday), linear
quadratic, and cubic functions of hourly tempermt(ft, T?, T?) and an autoregressive component (1-hour, 2-
hour, 3-hour, and 2#eur lagged loads). The results of testing ovity fnodel specifications for goodness
fit indicatethat a model including the variables listed abared with a single parameter for each temper
variable, is the specification with the best explany power for the utilities in the PIM region.

A simulation of a 2°F increase in temperature fdy &nd August 2000 resulted in a 4.6% increa
electricity demand for the region as a whole. €hbeing the peak cooling demand months, the av
increase over the year would likely be somewhatelowThese results are similar in magnitude to ltesu
reported for a simulation of electricity demanddalifornia by Baxter and Calandri (1992yho found a 3.8¢
increase over the year for a similar warming sdenar

As a verification of the OLS results, a set of ipunodels was also developed using #mntficial neura
network (ANN) approach. ANN modeling for the Baitre region within PJM showed that simule
electricity demand using ANNS is similar to simeldtdemand using OLS models, in terms of magnitudi
variation of hourly loads above thEaseline forecast (the forecast made in the absehemy temperatu
change). Over a simulation period from July 1, @@rough August 30, 2000, for a uniform twegre:
Fahrenheit increase in temperature, the ANN speatifin predicted an average riease of 4.5 percent over
baseline forecastyith individual hourly models’ results ranging fro210 percent up to 6.9 percent above
baseline ANN forecast. The OLS specification faltBnore only (as opposed to all of PIJM), meanv
predicted & .4 percent increase above baseline, with individoarly models’ results ranging from 2.1 perc
up to 6.3 percent above the baseline OLS forecast.

2. Long-run Effects of Weather on Electricity Loads
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The NEMS attempts to capture the interaction betwene energy markets and economic activity.the
NEMS, households and firms can adjuststack of electricity using equipment and buildidgk efficiencie:
in response to relative prices, economic activdtyg technology choices. Similarly, thiearic utility secto
adjuststhe mix and stock of generating facilities anchsraission network in response to expected der
relative prices of input sources, technology, ah@ tegulatory environmentEconomic growth ar
demographic trends are included in making the ptigjes by the 9 U.S. Census regions.

Weather and temperature are important drivers lutiéicity consumption. More than 40% of easle energ
consumption is related to the heating and cooliegds in the residential and commercial sectlectricity
consumption forecasting models typically use thodshfor defining when the cooling and heating rsead
required A fairly standard set of thresholds are temperatatwove 72 degrees Fahrenheit and below 65 d¢
Fahrenheit respectively. The difference in theydhigh and the 72 degrees is referred to as arogpdigre:
day (CDD); a similar calculation is performed tonstruct a heating-degree day (HDID) taking the differenc
between the low and 65 degrees.

We constructed a scenario based on the averape &fwarmest summers and the 5 warmest wingdative tc
the remaining periods to examine the effects ofaaming in temperaturelThis yields approximately a 2.
degree Fahrenheit increase in CDDs and almost reddephrenheit decrease in HDDbese temperatures
consistent with climate change considered by teGC

Our hypothesis was that warmer weather would chéamgennual pattern or shape of the load from witd
summer. In addition, the implied daily load coulibnge more toward peaking periotéigher temperatur
would reduce residential and commercial demandpace heating in the winter and increase the derfa
space cooling in the summer. The former is typycailpplied by fossil fuels kile the later is almo
exclusively provided by electricity. The impacudmlead to greater relative peaking capacity needs

The electricity demand modules of NEM@articularly residential and commercial, calcel&iectric loac
based conditional othe CDD and HDD variables along with the econoanid embodied technical chang
the stock of energy using equipment and structurks. load is allocated on what is called the “lcadve”
which illustrates the relationship of power constionp'supply during sulperiods of the period covered. T
can be broken out be season, day of the weekjraedf day.

The impact of temperature warming in the summegnario had two important effects. First, averkge
demand was about 2.7 percent higher inghmmer months. Second, peak demand was 5.4 pédricgrar
Thus, the results suggest an important impact erldad shape. Climate change will havéisproportiona
effect on load in the peak periods. This may bectyxahe periods when ozone is likely to bere of
problem. The JHU teams’ dispatch and supply emissimodels and weather models wakamine thes
potential these effects.

3. Additional Accomplishments
« The EPA STAR grant support a research assistantst@m Crowley, to formulateral complete h
PhD dissertation, on economic modeling as appliedatural resource issues. Portions from twi

three essays are presented in this report. Chrisiwley defended his dissertation on Mon
December 12, 2005. The two essays are includeldeimeport: 1)Electricity Demand Forecasting ¢
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Climate Change: Results for the PIJM Region an@o2¢casting Electricity Demand: A Neural Netw
Approach.

* The grant supported presentations national andniatienal conferences on energy demémdddition
several working papers are in process and will iWdarstted for publication in professional journ
They include:

(o]

OO0 o0OOo0o

« The results from the consumption forecasting antikition models were linked to supply and weathe

RER/Itron MetrixND Users Meeting (September 20@&3n Diego, CA

IAEE (July 2003), Mexico City

IAEE (July 2004), Washington, DC

INFORMS (October 2004), Denver, CO

IAEE (June 2005), Taipei

Working Paper: Seasonality and Weather Effects decticity Loads: Modeling ar
Forecasting

models. The scenarios of hourly load projectiond @@ long-run load projectiorfer the PJM regic
estimated from this research were able to be fedtire supply side models for generatthg dispatc
of electricity and resulting emissions. In aéuh, simulations were performed based on weathmtet
projections for hourly temperature warming scenddta for 1991-1997 and 2050-2055
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Section 1: Background on Electricity Demand Modelig and Weather
Section 1.1 Short-run or Hourly Models

Bunnand Farmer (1985) and EPRI (1977) contain cobbestiof papers on the modeling forecastir
hourly electricity loads. Total system loads weredeled by Schneider et al. (1985) in terms of Haad
weather sensitive load, error adjustment, and sidwearection. Ackerman (1985) compared alternatorent o
ARIMA models. Gupta (1985) proposed a model withsemal time varying parameters to historical logak
weather information. The parameters were adaptigeveould change in response to chandoay processe
Ramanathan et al. (1997) developed a series of Iméaleforecasting loads as functions of hourlyilydand
seasonal factors, autoregressive components, aatheveeffects. The innovation of their frameworkswha
rather than modelinghe entire load series, they developed individmaldels for each hour. This proy
productive in terms of explaining the data andoire€asting.

In general, aggregate analyses have found that esahand residential uses are much more ser
to temperature increases than industrial uses, jusgiifthe focus of this proposal on the former. Ehswidie
have usually concluded that climate warming woutddpce a few percentage point increase in co
requirements, and a similar decrease irtihngaequirements (Scott et al., 1994; Morris et H996; Sailor ar
Munoz, 1997); the canceling of the two effects rfti@plies that the net impact on annual energymag be
relatively small (e.g., Darmstadter, 1993). Asaample of such a studgaxter and Calandri (1992) projec
that a 1.9C warming would increase California’s annual elety requirements by 2.6%. What is m
relevant, however, is how that change is distridwméthin the year. In particular, the greatestréases al
likely to occur during weekdays during the air candihg season, precisely at those times that troipers
ozone violations occur. For instance, Baxter aath@ri's (1992) analysis indicates that their assad 1.9C
increase would magnify peak sumnedectricity demands by 3.7%. It is possible tiet proportional increa
during periods of high ozone may be even highendwer, no studies have analyzed climate’s effearmrg
demands on a temporal scale fine enough to contfidepossibility. One of this project’s purposes is to
that gap.

The result of using load duration curves in a tomg production simulation model is a set of estae
of average cost and emissions by generating upé fgr a given period of time. This will peit a gener:
assessment of the strength of the linkage betweginnal climate change and emissions of criteritufamts
However, because of the high correlation betwemetiarying electricity demands (and thus emissions
the meteorological catitions that influence ambient pollutant concemdrad, the impact of that linkage uy
concentrations and ensuing health effects mustbedoupon a detailed chronological simulation @l ippwe
system operations and pollutant transport and fiobamstion. Utility experience across the U.S. shows
variations in weekday demands are most stronglgcést®d with temperature, although wind, humidawp¢
cloud cover are also factors that are frequenthsitered in short-term models in Liu et al. (1996)ypically
80% or more of the variation is associated with ttveg and for systems we have studied, peak at
demands in the summer can easily vary by 25% oerbecause of day-tbay changes in temperature [Ho
et al., 1998].

Section 1.2 Long-run Models
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In Climate Change Impacts in the United States (NAST 2000) the National Assessmr
Synthesis Team identified areas where human andoetic behavior would be affected by climate cha
These effects may increase energy costs for consuamel firms,depending on the types of energy used
the geographic region considered. These impactsresulting feedback responses, may further impast
effects and overall carbon emissions. One ared #aen identified was heating and cooling requiresméort
residential and commercial buildings.

Rosenthal, Gruenspecht, and Moran (1995) workekl dédta from national building surveys |
five global climate change models to estimate th&t anpacts. They used historical regional weattaaanc
expectations of future weather patterns, convertiege into cooling and heating measures. Dathudding
and equipment stocks were converted into efficiemcintensity units to analyze the requirementsefioerg
use and the resulting economic costs. The restiltsi study suggested that total U.S. energy reguents
would show a slight decrease in the aggregatesiporese to climate warming.

Hadley, Erickson, and Hernandez (2004) examinedirtipacts of climate warming using
National Energy Modeling System (NEMS) and a gdnagreulation model of the Earth’s climate. Thelaurs
considered two cases: a 2.1°F increase and a §6f€ase. They present results by U.S. Censusmregic
find offsetting effects: heating needs decling¢hia winter while cooling needs increase in summetal energ
consumption declines with the former effect, anttéase with the latter. Responses vary by regowell a
with the energy fuel mix considered and with end-demand. On the whole, ce$énd to decline in northe
parts of the country, and tend to rise in the sewuthegions.

Section 2: Short-run Modeling and Forecasting of Ectricity

Section 2.1: OLS

The General Model

A seasonal model was chosen to isolate differeheteween summedemand and winter dema
Hourly temperature terms include the level, theasguand the cube of the temperature, to accounhdor
linearities in the temperatutead relationship. An autoregressive componenvaets for the loads of previc
hours. Deterministic variables capture the effects dfedent load patterns for different days of the lwee
holidays, and for the individual months within a setis season. The summer months are June, Jubs
and September, while the winter months Rezember, January, February and March. The nestrgl forn
of the summer model contains the full complementasfables:

7 3
log(Load,, ) = 5, + Y B Day,, + > g Month,
i=1 i=1

4 4 4
+zaiMonthht|:riht +ZViMonthmD-i§1 +Z/1iMonthh1Erif?l 1)
i=1 i=1 i=1
+g(L) (Load,, +6,

In Equation (1), the subscript refers to houh on dayt, T is the temperature, aridhy andMonth are
dummies that take on the value of 1 or 0 to isdlaeeffects of the various weekdays (or holidays) month:
For any given model specification, there is a fgnof twenty-four related hourly models, one each
h=1...24
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In the summer version of the modg}, captures the combined effect of Monday and JuRlee nex
seveng terms capture Tuesday through Sunday and the &jolidriable, which takes on alwve of 1 for day
that fall on common holidays, and 0 otherwise. Trireed terms represent July, August and September.
levels, squares and cubes of hourly temperatuegact with theMonth variables through the multiplies,,

and A, wherei = 1, 2, 3, or 4, to represent June, July, AugusSeptember. As an example, the s
component of the electric load for hobr on Fridays (4) in July (J,) is given by the expressi
Lo+ Bs+0+a T +y T2+AT5.

The dynamic component of demand is given by theoragtessive portion of the moc
#L) =gl +@l®+@l’+@L*, whereL is the lag operator. This term captures the lafdie previoughree

hours, as well as the previous day’s load.

The winter model is similar in form to the summeodal, referencing the winter months Decenr
January, February and March. For the winter matiel,constant terpfi, captures the effects of Mondays
January.

The goal of the modeling procedure is to inveséghburly demand elasticities with respec
temperature. Given the model specification in Egua(1), the elasticity for hourin month;j is given by

— —2 e
My =(c7/hj +2y, Th +3/1thhj)Erhj , (2

where Ty indicates the monthly mean temperature (in mgnfibr the hour under consideration (hdur

Model Selection

Carrying out the “general to specific” mduig approach advocated by Hendry (1993) invc
beginning with the general model listed above imd&gpn (3, then excluding classes of variables to genea
family of related, simplified models. To findmarsimonious model specification with the most arpton
power, Diebold (2001) recommends comparing the WKeéainformation criterion (AIC) and Schwa
information criterion (SIC) of the various model&hwthe original, “unrestricted” model of Equati¢f). The
AIC and SIC are expressions of mean squared awitir,a penalty for degrees of freedbrthese measures
commonly used for selecting among various forengstodels.

Ranking Models by Explanatory Power

Model statistics were calculated using EViews Qldntitative Micro Software, 2002), for a grouj
fifty- three related candidate model specifications. pation #1 is the unrestricted specification givim
Equation 1. The remaining fiftswo model specifications were derived from a liftatternate hypothes
about the relationships among the variables irutirestricted specification. These hypotheses ttadkdorm o
restrictions to the parameters in Equation (1). cénplete list of the models tested, and their paire
hypotheses, is given in Appendix 1 for the summedeh specifications, and Appendix 2 for the wintesde
specifications.

A mean AIC for Specification #1 was found by avénggthe AIC scores across the family of twenty-
four hourly models that use Specification #llogd,, =... up to Load,,, =...). A mean SIC score f

Specification #1 was derivedhslarly. In addition to the mean scores, a pdin@dian scores was calcula
using the median AIC or SIC from the family of tweifiour hourly models. Similar composite scores \

T T
L AIC = exp(_2rk/T) Zetz; SC :Tk/T—lzGtZ
t=1 t=1
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found for all fifty-three candidate model specificas. The candmte specifications were then ranked by
of these “composite” selection criteria, from low&shighest to consider which specifications created the
fitting models in the most parsimonious way. Timedel generation and ranking procedure wasopaed fol
each of the ten utility control regions within PJMnce for the summer models, and once for theer
models.

Each selection criterion in turn, is examined in @&tempt at identifying one “universal” mo
specification that performs wedkross the entire PJM area. Considering the tepifigations across the util
regions, the summer models have a more aatset of “winners” than the winter models do. @y the
“composite” selection criteria, the mean-compospgesduced more caistent results than the median scc
giving stronger recommendations for the preferredi@fs across all utility regions. Compared with theal
AIC, the mean SIC score tends to favor a smallerogenodels across all regions, due to the SICghé
penalty for degrees of freedom. In light of thessults, the mean-composite-SMas chosen as the selec
criterion for this study, as the most selectivetted four criteria considered. Using the mean SiGres tc
choose the best model for each oegresulted in two different specifications comiogt ahead: for nir
regions Specification #52 was the best, and forreg®n #49 had the lowest mean SIC.

The Winning Specification

The results of the selection process indicate thatexplanatorypower of a model is increased
including the deterministic effects of weekdaysekends, holidays and the months. Temperaturesvil
squared and cubed terms also tend to add to tHaratpry power of a model. The clear winner acrait
regionsis model #52, which achieved the lowest mean Sl@ime of the ten PJM utility regions for b
summer and winter, coming in second-lowest in émtht region (BGE).

The specification for model #52 includes the fulliplement of deterministic variableBdy, Month,
Holiday), the autoregressive components (1-hour, 2-hodr3ahour lags, plus a day lag), and one parame
each for the level, square and cube of the temyrerafThe assumption underlying Model #52 is thetd is n
variation in temperature effects across the moaottise season, i.er, = a, = a, = a,, and likewise fory, anc

A . In other words, the demand effect of the terpeedevel @) is the same in June #ss in July, Augus

or September, and likewise for the squayg) @nd cube 4,) of the temperature. These restrictions holt

both summer and winter models (though the wintenthare December, JanuarypRery and March). Tt
parameterization of Specification #52 for the H8unodel of the AE region (Atlantic Electric Co.)riportes
in Table 2.1.

The parameterization of Specification #52 for theuH8 model indicates small but highly signific
negativeDay effects (Tuesday through Sunday, and Holiday)e $&me is true for thdonth effects, althoug
July appears to be insignificantly different froera. TheTemperature effects are highly sigrifant: small an
negative for the temperature level; smaller stilll gositive for the square of temperature; minuig megativ
for the cube of temperature. Among the laggeddptte load from the previous hour (listed as “Ldag{0)"
in Table 2.1) and the load from the same hour enpitevious day (“Load_08%}" in the table) are high
significant and have a positive effect on the IéadHour 8. The high Rvalue reported for this model
typicd for highly autocorrelated series that includeslag the model specification. This autocorrelatadsc
accounts for the large and significant coefficientthe 1-hour lag.

2 Both AIC and SIC are measures of model error, thlosv score indicates a better model fit.
® Error! Reference source not found.contains information on the utility companiestie JM control area.
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Dependent Variable: LOG(LOAD_08)
Method: Least Squares
Date: 04/28/04 Time: 14:45
Sample: 6/01/1995 9/30/1995 6/01/1996 9/30/1996 6/01/1997 9/30/1997
6/01/1998 9/30/1998 6/01/1999 9/30/1999 6/01/2000 9/30/2000
6/01/2001 9/30/2001 6/01/2002 9/30/2002 6/01/2003 9/30/2003

Included observations: 1098
Newey-West HAC Standard Errors & Covariance (lag truncation=6)

Variable Coefficient Std. Error  t-Statistic Prob.

C 1.525062 0.184488 8.266477 0.0000
TUESDAY -0.004523 0.001528 -2.960444 0.0031
WEDNESDAY -0.004593 0.001531 -2.999382 0.0028
THURSDAY -0.004750 0.001341 -3.542811 0.0004
FRIDAY -0.003617 0.001483 -2.438794  0.0149
SATURDAY -0.026965 0.002636 -10.22842  0.0000
SUNDAY -0.039265 0.003404 -11.53554  0.0000
HOLIDAY -0.024218 0.005282 -4.584677 0.0000
JUL -0.001572 0.001467 -1.071752 0.2841
AUG -0.010664 0.001755 -6.076508 0.0000
SEP -0.027428 0.001585 -17.30021  0.0000

(JUN+JUL+AUG+SEP)*TEMP_08  -0.030828 0.008163 -3.776449  0.0002
(JUN+JUL+AUG+SEP)*TEMP_08"2 0.000410 0.000119  3.448763 0.0006
(JUN+JUL+AUG+SEP)*TEMP_08"3 -1.64E-06 5.72E-07 -2.867345 0.0042

LOG(LOAD_07(0)) 1.011322 0.038935 25.97456  0.0000
LOG(LOAD_06(0)) -0.186012 0.119803 -1.552649 0.1208
LOG(LOAD_05(0)) 0.054116 0.095028  0.569470  0.5692
LOG(LOAD_08(-1)) 0.017087 0.006160  2.773783  0.0056
R-squared 0.993694 Mean dependentvar  7.065505
Adjusted R-squared 0.993595 S.D. dependent var 0.144466
S.E. of regression 0.011562 Akaike info criterion -6.065925
Sum squared resid 0.144375 Schwarz criterion -5.983937
Log likelihood 3348.193 F-statistic 10010.95
Durbin-Watson stat 1.773299 Prob(F-statistic) 0.000000

Table 2.1. Statistics for Specification #52, Hour 8 odel (AE region)

Elasticities for Specification #52

Figure 2.1 shows an average load curve for the égion by hour In the figure, the load reported
each hour is the average load at that hour ovemtiregh of July 2000. The load is measured in med&wour:
(MWh) on the right-hand vertical axis. The leftHda vertical axis records the correspondihgurly
temperature elasticities, shown as bars, and eatmiusing Equation(2. Shading of the hourly elasticity b
indicates significance: solid bars have temperaglasticities that are significant at 95%. Notattithe
elasticity depends on three estimated coefficiasgociated with the temperatuee; y and A, for the level
square and cube of the temperature. The solidifiignt) bars in Figure 2.ihdicate significant values for
three coefficientsq, y, 1), elasticities with at least one insignificant cagént are shown with hashed b

Throughout this study, Hour 1 refers to the houneen midnight and 1:00 a.m.

Temperature elasticities appear to be lowest inntgbttime and early morning, with skicities fron
0.02 to 0.05 between the hours of 1 a.m. and 7 &haugh there is some air conditioning responsiveme

Final Report EPA Weather Effects on Electricity Hea Page 9 of 48



hot nights, most consumers are asleep or othertwiédine” during these hours. With the start of therk
day, temperature elasticity increases dramaticabling above 0.19 between 7 a.m. and 10 aemperature
and loads rise as businesses open and people tegindaily activities. Throughout the working de
elasticities are more moderate, remaining betwe88 @nd 0.12 from 10 a.m. to 4 p.nElasticities ar
relatively low during the late afternoon and inte night, falling to between 0.05 and 0.10 adtgr.m., until th
cycle repeats.

Temperature Elasticity and Load - AE July 2000

0.25 - -~ 1800
0.20 +
> + 1500
5 0157 2
3 010 - d 5
w L 1200
0.05 -
0.00 - | - 900
1 6 11 16 21

Hour of the Day

m Temp Elasticity —— Load

(solid bars have significant t-stat)

Figure 2.1. Temperature Elasticity and Load, AE regn, July 2000

Simulation

A climate change simulation was conducted for &ng August 2000ysing the simple scenario @
uniform 2°F increase in all hourly temperatureshisTsimulation involves parameterizing the twefdyt
hourly models (Specificein #52) on the historical temperature data fromuday 1, 1995, and forecasting
hourly loads for the first day in the simulatiorripd (Julyl, 2000). The difference from the original forgicia
that theseimulation forecasts for July 1 are madsing the simulation temperatures for July 1, whadirourly
temperatures are two degrees above higher thasribatseries. Next the day ahead forecasts are made
July 2, using the simulation temperatures for 2ulyFor these 1-day ahead faasets, the lagged load values
the simulation forecasts from July 1. The Julyi@uwation forecasts are used to make thda@-ahea
simulation forecasts for July 3, and so on, throtighend of the simulation period on August 31.

The change from theinconditional forecast (made using the original temperature sgrie the
conditional forecast (that is, conditional on the artificiainigerature series) gives the model’s estimate ¢
effect of warming on electricity demand. This chars shown in percentage terms in FiguréoR the mont
of August 2000. Two hours of the day have beeacsedl as representative: Hour 18 (5:00 p.m. to §:60
typically has the highest demand of any hour ofdag, while Hour 5 (4:00 a.m. to 5:00 a.m.) hasltieest.
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AE Load: August 2000 with 2F Increase
8% 8%

6% 6%

4% 4%

2% 2%

8/1/00 = Tuesday

0% \ \ \ \ 0%
8/1/00 8/8/00 8/15/00 8/22/00  8/29/00

% Increase from Baseline Forecast

——Hour 18 —=—Hour 5

Figure 2.2. Percent Increase in Simulated Load: AEegion, August 2000

The simulation shows an increase in load foreddstaighout the montlof August 2000 (July 20(
shows he same result). On most days, the response at180is one percent to three percent higher the
Hour 5 response, reflecting the higher demand fectecity, in particular cooling, at that time tie day i
August. The overall result for the AE region otbe two-month simulation period is a %4increase i
electricity demand due to the 2°F rise in tempeestuThe AE region is somewhat more responsive tha
PJM region taken as a whole. When the resultsifden utility regions are averadedhe entire PIM regic
sees a 4.6% increase in demand over the same twilhsnoThe response for the PJM region as a wialehe
same two hours) is shown in Figure 2.3.

As for the AE region alone, the PJM region as ale/lstiows a greater increase in load for the high-
demand hours than for the low-demand hours. lurEi@.3 peak loads for Hour 18 are shown increa
between four and sixgocent over the baseline forecast, while loadsHfour 5 are typically between two &
five percent above baseline. Lalemand days tend to affect all hours of the daylaily: the third week ¢
August is a low-demand period throughout the daypethHour 5 and Hour 18 dip to a low point in
forecast. These effects were found to be congia@nss all regions of PIM.

“ Note that these are population-weighted averags. weights are taken from the relative contrituif each
utility’s average load over the period to the ageréoad for the entire PIJM region during the saeréop.
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PJM Load: August 2000 with 2F Increase

8% - | — 8%
Q |
£ ;
& 6% - | - 6%
0 - |
£ ‘
28 4% - | T A%
(] 5 |
0 L |
© |
g 2% | | T 2%
= 8/1/00 = Tuesday
S ‘

0% } T T T O%

8/1/2000 8/8/2000 8/15/2000 8/22/2000 8/29/2000
—e—Hour 18 —=—Hour 5

Figure 2.3. Percent Increase in Simulated Load: PJMegion, August 2000

Section 2.2: ANN

This sectioncompares the results of the simulation forecastsidd in the OLS modeling effort w
the results of an artificial neural network (ANNJproach. This exercise was conducted in partvasificatior
of the results obtained from the OLS models. TthesANN modeling effort focuses on a single regidJM
namely the area served by Baltimore Gas and He@&GE).

The inputs to the ANN models are identical to thosed in the OLS approach, including determir
calendar variables, temperatureldagged loads. The optimal neural network spetibn was determined
conducting a performance analysis on various hwsitled network architectures, and by training
“winning” network with historical data. The hourlyeural network models eactsed eighteen independ
“input” variables to produce an hourly load resufthe final architecture for each hourly model. (ihee numbe
of neurons in each model’s input layer) is reportedable 2.2
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Model | Optimal Input Neurons
Hourl | 2 S A
Hour2 | 2 A
Hour3 | 2 2o &
Hour4 | 3 & B 5
Hour5 | 4 & o i &
Hour6 | 2 2o &
Hour7 | 2 A
Hour8 | 2 2o &
Hour9 | 2 2o &
Hour 10| 3 TN
Hour 11| 2 .
Hour 12| 3 Fo A &
Hour 13| 2 & &
Hour 14| 2 S A
Hour 15| 1 £

Hour 16| 1 &

Hour 17| 1 2

Hour 18| 1 2

Hour 19| 2 S
Hour 20| 3 -
Hour 21| 2 & B
Hour 22| 2 S
Hour 23| 2 & B
Hour 24| 2 S5

Table 2.2. Optimal Model Architecture

As the focus of the OLS modeling effort was the Pd#gion as a whole, ith section includes a br
discussion of the OLS results for the BGE regiamnal The remainder of this section compares tinerg
results of the two approaches, proceeding to a metailed consideration of the daily high- and ldemani
hours. The final sub-section reports average tefol each of the hourly series obtained.

OLS Simulation Results for BGE Region

The average predicted increase in BGE's hourly loagr the simulation period is remarkably sin
for both OLS and ANN specificatisna 4.4 percent increase for the OLS models, ah8@l percent increase
the ANN models. The range of increases over bas@liedicted by the OLS specification is demonesti
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Figure 2.4, which shows the simulation-to-basefmecast ratio over the twmonth simulation period, f
Hours 5 and 17. For the data considered here, Bdsiion average the lowed¢mand hour of the day, wr
Hour 17 is the highest-demand hour. The ANN versibthis graph is given in Figure 2.5.

Sim:Baseline Ratio - Hour 5 and Hour 17
(OLS Specification)

1.07 -

1.06 -

1.05

' N LI N N [N

104 10 Ve ho.raha .
. o Al A% 1] 1 LR IR

\’ * ' r r VII

1.02

Sim : Baseline Ratio

Hr 17 (ave. daily max load)
1.01 -

....... Hr 5 (ave. daily min load)

1.00

& o ©
A A AV & e

Figure 2.4 Ratio of Simulated to Baseline Load: BGEegion, 7/1/2000 — 8/31/2000
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Sim:Baseline Ratio - Hour 5 and Hour 17
LB e e e e e e e e e e e e e o o o o s

14 S USRI SU———

1.06

=
=
(&)

roafs

Sim : Base Ratio

103

1.02f

1.01 A ' '
— Hour 17 {ave. daily max. load)

- Hour 5 {ave. daily min. load)
I

1 |
Jul 1 Jul 15 Aug 1 Aug 15

Figure 2.5 Ratio of Simulated to Baseline Load: BGEegion, 7/1/2000 — 8/ 31/2000

Both OLS and ANN simulations show a fairly stabdenperature-related increaseforecasted loe
over July and August 2000. The two-degree temperatse is predicted to increase daily peak ld4éou¢ 17)
about 4 to 6 percent above the baseline load fetecihe smallest daily loads (Hour &)e also shown
increase, about 3 percent to 4.5 percent abovbabeline. The ranges are somewhat lower and more cot
than those derived using the neuretwork specification. This description also haidsge on average across
twenty-four hours of the daily model.

A Closer Look: Two Representative Hours

To offer some insight into the differences betwtenresults of the OLS models and the ANN madels
the Hour 5 ratio series for the two specificatiams compared in Figure 2.6nd the Hour 17 ratio series
compared in Figure 2.7. In both figures, the twdes ae seen to be quite similar in terms of range aeadd
that is to say they tend to predict similar incesasver baseline load forecasts, with relativelgda prediction
for the same days. The neural network specifinasbows more variability thathe OLS specificatio
especially for the high-demand period (Hour 17)valmdn Figure 2.7 This higher variability in the AN
simulation may be due to the relatively large numbg parameters in the ANN specificatidn. More

® The total number of estimated parameters in an Asligiven by N (k+2)+1, whereN is the number of
neurons in the input layer, akds the number of input variables.
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parameters may allow the ANN forecast to be maegilile than the OLS model for modeling higamani
episodes.

Sim:Baseline Ratio - Hour 5
(OLS and ANN Specifications)
106 T - - - - - - mmmmmm e mmmm oo
1 i
i)
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Figure 2.6. Simulation-to-Baseline Ratio for Hour 5OLS and ANN Specifications)
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Sim:Baseline Ratio - Hour 17
(OLS and ANN Specifications)
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Figure 2.7. Sim:Baseline Ratio for Hour 17 (OLS and\NN Specifications)

Average Results over all Hours

The average predicted increase by both OLS and Aiddels for the twanonth simulation period
compared across all twenty-four hourly models iguré 2.8 In the figure, the OLS ratios of simulation lda
baseline forecast (standing bars) is shown to tiavysame general profile as the ANN ratios. Fostrhours
the neural network specification predicts a larggmperaturgelated increase over the baseline fore
Notably, the exceptions to this relationship are tighesdemand hours of the day: the afternoon and ev
period captured in the models for Hour 15 througiuH19 (2:00 p.m. t&:00 p.m., through 7:00 p.m.). |
these hours, the OLS specification predicts a targgease over baseline load forecasts, by aboethalf of ¢
percent. It is unclear why the ANN simulation foasts predict a smaller increase in load for thekypemani
hours.

As with the difference in forecast variation for td7 shown in Figure 2.7This difference may be d
to the larger number of parameters in the ANN d$petion, and the greater potential forrigdion in mode
specification from one hourly model to the nexthaTis, all hourly OLS models used the Specificati®2
which was selected as the best specification aaibs®urs of the day. Each hour's model was patanzet
individually, allowing for differences in the relationship among tlaiables at different times of the day.
contrast, the specification of the ANN models ig consistent across all hourly models, as the af
architecture (number of input neurons) was selestgmhately for each hour's model. As a result, the #
may be modeling a slightly different underlying pess for these higbemand hours, as compared to the 1
consistent specification of the OLS models.
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Sim : Baseline Ratio (OLS and ANN Specifications)
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Figure 2.8. Predicted load increase for all hourlymodels
(average over 6/1/2000 - 7/31/2000)

A relatively smaller temperaturelated increase during the peak load hours ofdte may not b
unlikely. For example, some sort of threshold effsuld be at work: summer afternoon and evenmgdare
currently marked by high electricity demares warm temperatures during these times crederand fc
space cooling. With mangir conditioning units are already in use, aneéase in air temperature may h
little effect on electricity consumption for these times of they.d In the late evening and early morr
however, historically cooler temperatures havevadld for lower space cooling demand in these periddsse
in temperatures during these hours could prongitith in cooling demand, and as more people lehe# #il
conditioners on overnight, the result would berareéase in electricity use over historical patterns

Section 2: Summary

The results of the ANN modeling exercise showeat #imulated electrity demand using ANNs
similar to simulated demand using OLS models, imgof magnitude and variation of hourly loads abth
baseline forecast (the forecast made in the abs#eey temperature change). Over a simulatiorogdrom
July 1, 2000 through August 30, 2000, for a unifdmo-degree Fahrenheit increase in temperature, the
specification predicted an average increase ofpérsent over the baseline forecasith individual hourly
models’ results ranging from 2.0 percent up to pe9cent above the baseline ANN forecast. The
specification, meanwhile predicted a 4.4 percetiteiase above baseline, with individual hourly mgdelsult:
ranging from 2.1 percent up to 6.3 percent abogetiseline OLS forecast.
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Section 3: Long-Run

This section is in two parts. .Part 1 describes MEMS model responses to climate
change. Part 2 explains the long-run temperatansisvities from the Regional Short-term
Energy Outlook (RSTEO).

Section 3.1 The NEMS Model Responses to Climate Qinge

The long-run model results for climate change iotpan electricity consumption are basedten
kinds of models. The first i@ “general equilibrium approach” for the entireSU.The National Ener;
Modeling System (NEMS) which the Energyfdmmation Administration (EIA) uses in making prciiens tc
20252030 was the primary model. In the NEMS, househalus firms can adjust stock of electricity us
equipment and building shell efficiencies in resgro relative prices, economic actyiand technoloc
choices. Similarly, the electric utility sector aslis the mix and stock of generating facilities tnaghsmissio
network in response to expected demand, relativeeprof input sources, technology, and regul:
environment.

Section 3.1.1 Brief Overview of the NEM S Model

The figure 3.1.1 below illustrates the modules lid NEMS. It is taken from the documentation
NEMS on the EIA websitdNEMS is comprised of 13 modules. There mer supply modules (oil and g
natural gas transmission and distribution, coall aenewable fuels) and two energgnversion module
(electricity and petroleum refineries). Demand byd-@se broken out intdour modules (residentii
commercial, transportation, and industrial). Thene two modules characterizing themergy/econonr
interactions (macroeconomic activity and world mihrkets or international energy activityfhe final o
integrating module provides the mechanism to aehganeramarket equilibrium among all the other modu

The electricity market is comprised of the intei@ttbetween the Energy Market Model (EMM)
supply side and the sector demand models: ResidleGtimmercial and Industrial. The EMM receivadsctr
demand from the NEMS demand modules every yeaddiition other inputs likéuel prices from the NEM!
supply modules, and macroeconomic drivers or iridisafrom the NEMS macroeconomic modulé 1
estimates the responses by electric utilities antutilities to meet demand using economic critefiae out
from the EMM include:electricity prices to the demand modules, fuel comstion to the fuel supply ma
capital requirements to the macroeconomic modutéssons to th integrating module, and. The model
until a solution is reached for that model year.

The EMM has several subedules: capacity planning, fuel dispatching, foeand pricing, and load and d
side management. In addition, non-utility supphd electricity trade are accounted for in the alisip and cay
planning sub-modules. The demand and fuel supplyutes feed the noutility generation. This is primarily
co-generators and other facilities whose primargin®ss is not the geragion of electricity. The EMM
modules or components are designed to embody gricfnelectricity, generation, transmission, acep:
planning subject to: the delivered fuel prices doal, petroleum distillates, and natural gas; th&t of opea
centralized generation plants; macroeconomic infartsapitalcosts and domestic investment; and electri
shapes and demand.
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Figure 2. National Energy Modeling System
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Section 3.1.2 Brief Overview of the NEMS Electricity Modules

Table 3.1.1 below shows the inputs, outputs, amgjexous factors used in the Electricity Market neslanc
the related Demand Modules. It is taken from théVi$Edocumentation on the EIA website too.

Table 3.1.1
Module Outputs Inputs from NEMS Exogenous Inputs
Electricity Electricity prices and Electricity sales Financial data
Market price components Fuel prices Tax assumptions
Fuel demands Cogeneration supply and fuel | Capital costs
Capacity additions consumption Operation and maintenance
Capital requirements Electricity sales to the grid costs
Emissions Renewable technology Operating parameters
Renewable capacity characteristics, allowable Emissions rates
Avoided costs capacity, and costs New technologies
Renewable capacity factors Existing facilities
Gross domestic product Transmission constraints
Interest rates Hydropower capacity and
capacity factors
Residential | Energy demand by Energy product prices Current housing stocks,
service and fuel type Housing starts retirement rates
Changes in housing and| Population Current appliance stocks an
appliance stocks life expectancy
Appliance stock New appliance types,
efficiency efficiencies, and costs
Housing shell retrofit indices
Unit energy consumption
Square footage
Commercial | Energy demand by Energy product prices Existing commercial floor
service and fuel type Interest rates space
Changes in floorspace | Floorspace growth Floorspace survival rates
and appliance Appliance stocks and
stocks survival rates
New appliance types,
efficiencies, costs
Energy use intensities
Industrial Energy demand by Energy product prices Production stages in energy

service and fuel type
Electricity sales to the
grid

Cogeneration output and
fuel consumption

Economic output by industry
Refinery fuel consumption
Lease and plant fuel
consumption

Cogeneration from refineries an

oil and gas production

intensive industries
Technology possibility
curves

Unit energy consumption
@tock retirement rates
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The electricity demand modules of interest withpect to climate change are

the residential and commercial sectors. The sirfiplechart, Figure 3.1.2 at the righ
briefly illustrates the process used to forecast demand for electricity in terms o
cooling and heating needs and other appliancegnGivilding stocks

FORECAST
HOUSING
STOCH

Each year residential households and business fiawe as given their stock of
buildings with their shell efficiencies and stock appliances with given embedded

h 4

technology. They receive as inputs relative prioésalternatives to centralized o
electric power from the grid, macroeconomic indicat or drivers for income,
spending, and interest rates or capital costs. dditian, they have information

CHOOSE
TECHROLOSY

technologies for new structures and energy usimjares. They can choose to retire
old structures, build new build buildings, renovaad choose to replace or add new
appliances. Once decisions are made the resulgatrieity demand is calculated.

r

Technology adoption and efficiency choices madedsidential equipment are

based on a logistic function. The choices are tated based assumed market shates

FORECAST
APPLIAMCE
STOCK

for competing technologies based on the relativgghis of capital (first cost) and
discounted operating (annual fuel) costs. A deteistic time logistic function

l

calculates the penetration and capital cost ofpegent in new construction based. |f
climate change is expected to occur (actually zedli through model input
assumptions) and or relative fuel prices increageifcantly and remain high over 3
number of years, then more efficient appliances vélavailable earlier in the forecag

—

CHOOSE
BUILDIMNG
SHELL

period than would have been otherwise.

l

Technology choices and switching are based orsticgmodels Households
replace space heaters, air conditioners (heat pamghsentral air conditioners), water
heaters, refrigerators, stoves, and clothes diyeomparing the pay-off of competing
technologies in single-family homes. The demand ufexlassume that 20 only percent

CHOOSE
DISTRIBUTED
GEMERATICR

EUIPMENT

of the replacement market in single-family homed awltifamily and mobile homes
are eligible to switch fuels in any forecast yeHnis is an assumption that could be

examined further in any future study. The functidoam is flexible and will allow the
users to specify different parameters, like retxjuipment costs and technolog
switching costs.

COhPUTE

y COMEUMFTION
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Section 3.1.3 Regional Coverage of the NEMS Model

The NEMS attempts to capture the interaction betvtbe energy markets and economic activity. Tl
different modules for energy supply, energy coneersand end-use energy demand. The model achéeves
supply/demand balance in the 9 U.S. Census redipsslving for energy product prices with the qutzsg
demand and supplied. See Figure 3.1.3 belloaddition, four states, California, Florida, N&erk, and Texa
analyzed separately.

WEST MIDWEST NORTHEAST
- . & H
Facific Mounitain u«ﬂaﬂmu Nﬂm&l:’inlral .&[;::::: Engelrnd
]

VT

Figure 3.1.3 U.S. Census Regions

The modules for the electricity sector attemptetibect market structure and existing energy paieac
regulations.The electricity market in the U.S. is structuredumd the 10 NERC regions or reliability count
The NEMS integrating modulallocates the Census region level consumption giiojgs each year to t
NERC regions for dispatching of loadhancial planning, and maintenance and capitalstontion o
generating facilities.
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Figure 3.1.2



Section 3.1.4 The Impact of Climate Changein the NEMS Modé for the PIJM Region

Weather and temperature are important drivers lfmtcity consumption. More than 40% of enske
energy consumption is related to the heating arairap needs inthe residential and commercial sect
Electricity consumption forecasting models typigalse thresholds for defining when the cooling aedting
needs are required. A fairly standard set of tholeishare temperatures above 72 degrees Fahrenkeiebw
65 degrees Fahrenheit respectively. The differencéhe daily high and the 72 degrees is referredga
cooling-degree day (CDD); a similar calculationpisrformed to construct a heatidggree day (HDD) ¢
taking the difference between the lowda65 degrees. CDD and HDD are further adjustedpdyyulatior
changes to account growth in a particular areadamebographic changes in population across regions.

The PJM region has experienced significant vamafio heating and cooling degree days frtime
“normal” weather during the period from 192803. The two degree day measures do not appebe
correlated. We constructed a scenario based on the averageedd tvarmest summers and the 5 war
winters relative to the remaining periods to ekamthe effects of a warming in temperature. Thisdg
approximately a 2.1 degree Fahrenheit increaseDB<Cand an almost 4 degree Fahrenheit deatintéDDs
The range for summer temperatures and cooling neetged from 16 percent below (1976) to dércen
above (1998) average respectively. Heating degage dr winter temperature needs ranged from 1lepi
colder (1978) to 12 percent warmer (1998) than ayerespectivelyrigure 3.1.3 shows the historical val
for CDD and HDD in the Mid-Atlantic Census regiami 19732003. Histograms and summary statistics
presented in Figures 3.1.4 and 3.1.5 respectieelthe two measures.
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Heating and Cooling Degree Days
for the Mid-Atlantic Census Region
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Cooling Degree Days for the Mid-Atlantic Census Region

Series: CDD_MAAC
Sample 1973 2004
Observations 32

Mean 795.6617
Median 791.8929
Maximum 1001.884
Minimum 557.6620
Std. Dev. 114.7943
Skewness -0.031238
Kurtosis 2.082890
Jarque-Bera  1.126660
Probability 0.569310
600 700 800 900 1000
Figure 3.1.4
7
Series: HDD_MAAC
6 Sample 1973 2004
Observations 32
5 |
Mean 5467.082
4] Median 5545.959
Maximum 6081.678
3] Minimum 4542.408
Std. Dev. 351.3224
2 Skewness -0.780910
] Kurtosis 3.290782
14 Jarque-Bera  3.365118
0 Probability 0.185898

4800 5200
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The electricity demand modules of NEMS, particyladsidential and commercial, calculate electr
loads conditional on the CDD and HDD variables glavith economic inputs and the embodied tech
efficiency in the stock of engy using equipment and structures. The load icafled on what are called “lc
curves.” They illustrate the relationship of powensumption/supply during syieriods of the period cover:
This can be broken out be season, day of the vamektime of day.

Our hypothesis was that warmer weather would chdhgeannual pattern or shape of the load
winter to summer. In addition, the implied dailyatb could change more toward peaking periods. Tlais
observed in the short-run models. Higher terapees will reduce residential and commercial detrfanspac
heating in the winter and increase the demandgdaces cooling in the summer. The former is typicallppliec
by fossil fuels while the later is almost exclugywerovided by electricity. e impact could lead to gree
relative peaking capacity needs, particularly i smmer.

Table 3.1.2 presents the results from the Comparieo PJIM (MAAC) Summer Load Slice with warm
climate change scenario. The first four columngatize the nine slices of the load curkead groups 7,
and 9 refer to the midday, morning and evening, ragit-time hours respectively. These are the h8tt8, 6-
7 and 19-24, and 1-5 respectively. There is a éurbreakdown by load group into three segmeeltsting tc
the percent ofoad expected in each group. The breakdown istopiol% or peak load in the group, the |
33%, and finally the 66% lowest expected load iche@me) group. These are the three load segnieptan:
3 respectively. Column four presents the total neindd hours for the summer load in load slice.

The load in Gigawatts for 2004 is given in columfoiowed by the NEMS reference projection for 2Gi%
then the projection for 2025 in the climate chasgenario. This is faliwed by the percent change in the Ic
in 2025 from the 2004 in the next two columns. Pleecent increase over the NEMS reference casedt
slice for the climate warming scenario. The last s@lumns show the annual percent increase in lbgder
the NEMS and warming scenarios from 2004.

The impact of temperature warming in the summenage had two important effects. First, averaged
demand is about 2.7 percent higher in the summathmadhan in the NEMS reference case. Secthrad|oac
demand is not proportionately higher by load slieak demand was 5.4 percent highehe climate warmir
scenario Thus, the results suggest an important impactthen load shape. Climate change will ha\
disproportionate effect on load in the peak perimdsach load grouprhis may be exactly the periods w
ozone is likely to be more of a probleRigure 3.1.7 illustrates the impacts in a bar chéh three bars in ea
section showing the 2004 load, 2025 NEMS referdome, and the 2025 climate change scenario.
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Table 3.1.2

Summer Load Slice Comparison for PJIM (MAAC)

ond igavats | Pieen Chanae [ PEen] Al
Over
Slice Gl‘%idp SlégaintHours 2004 Re;«(e)rzegcew%r;se ' Referencela Warmer Reéeafsgﬂ Reference|\
1 7 1 10.1| 525 73.1 77.08 39.19%0 46.68%  5.38% %.59
2 8 1 7.4 49.5 65.8 69.0% 32.75p0 39.41%  5.02% 1.36%
3 7 2 334.0 45.3 64.5 66.84 42.45% 47.70%  3.68% 09%.7
4 8 2 2429 41.9 55.6 57.36 3280% 37.04% 3.19% 6%.3
5 7 3 667.9 37.6 53.1 5458 41.05% 44.99% 2.79% 5%.6
6 9 1 4.6 37.2 48.1 49.10 29.45 32.01%  1.98% 1.24%
7 8 3 485.8| 33.0 43.0 43.82 30.08% 32.71%  2.02% 6%.2
8 9 2 151.8| 30.8 39.6 40.31 28.75% 30.97% 1.72% 1%.2
9 9 3 303.6| 26.8 34.5 3498 2887% 30.78%  1.48% 2%.2
2004 Load is an estimate for the base year of tieuAl Energy Outlook 2005 Source: EIA
Reference 2025 Load is the Reference Case for imei@ Energy Outlook 2005 Source: EIA

used. The estimate was 950.

Warmer 2025 Load is an estimate for the impacthaharease in CDD for PIM (MAAC) region. The 30 ypaf
weighted average was about 800. The scenario @msidcase where the average of the 5 warmestipehiesre

IAcknowledgements: John Cymbalsky (EIA), Laura Ma(&lA), and Frank Morra (Booz Allen Hamilton)
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Load Curve Comparisons
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Section 3.2 The RSTEM Description and Temperature Bsticities

A second model, also from EIA, the Regional SA@tm Energy Model (RSTEMestimates region
electricity consumption by sector was used as aptemment to the analysis. It is a sht@tm econometr
forecasting model by region and sector and is gaBIA’'s new Regional Shoiferm Energy Outlook. Whi
the forecasting model is focused on a horizon gfidrter to two years, the electricity consumpticrdad is
dynamic one. Thus longin price, income, cooling degree day and heatiegrek day elasticities can
calculated. The temperature sensitivities from thizdel can be roughly compared with the long-mode
results from the NEMS.

We developed this model with the support of DaRiktello,Office of Energy Markets and End L
(EMEU), EIA, U.S. Department of Energy. Wealized the complementary nature of this researcthe EP;
STAR grant. The temperature sensitivities from thisdel can be roughly compared with the long-mode
results from the NEMS. Below we 1) briefly descrihe econometric issues, 2) summavilze sector speci
models, 3) provide detailed descriptions of thedesgtial and commercial equations, and 4) predentshort-
run and long run elasticity estimates. The dataifermodel is briefly described in Appendix 3.

Section 3.2.1 Econometric Modeling | ssues

The time series energeonometric consumption models are designed toigwoanalytical an
forecasting support by the nine U.S. Census Regiadsfour particular states (California, FloridaviNYork.
and Texas). Sectoral electricitgmiand equations are developed for the residentaymercial, and industri
sectors. The demand equations are based on tires srergy econometric techniques. The specifios
address issues related to dynamics, stationantggiation, cointegratn, seasonality, and structural bre:
The consumption equations are aggregated intomabinodels and nationally by sector.

Figures 3.1.8 present the monthly (population Weid) CDD and HDD values for the period 1990-
2004. The residential and corargial consumption loads per month per day are igenlvin Figure 3.1.
respectively. There are clear seasonal peaks itwtheseries. In addition, the data show the impddtrend:
related to economic activity, population growthdagnergy consumptiorAlso, the commercial sector d
illustrate the potential for fluctuations due tmromic activity.

The RSTEM_EC were developed using the principlieshe general-tspecific modeling approa
advocated by Hendry (1986a, 1986b, 1993, 1995,280d). The general-tspecific modeling approach it
relatively recent strategy used in econometricee (8ppendix 4.)t attempts to characterize the propertie
the sample data in simple parametric relationshipsch remain reasonably constant over tiaegount for th
findings of previous models, and are interpretablean economic and financial sense. Rather thang
econometrics to illustrate theory, the goal is dis€¢over" which alternative theoretical views agaable an
test them scientifically.
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Monthly CDD and HDD for the Mid-Atlantic (PJM) Region
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Figure 3.1.8
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Residential and Commercial Electricity Consumption
Mid-Atlantic Region
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| Section 3.2.2 Summary of Sector Specific Models __ - | Deleted: 1

Page Break

Residential DemandThere are economic, seasonal, and trend issue$ whad to be addressed in
residential models. The primary determinants oflesgid electricity demand in a region are: occupied Iy
units or households; share of occupied housingsumithouseholds using electricity as the primargrgy
source for heating; share of occupied housing umithouseholds with installed air conditing; cooling
degree-days; heating degree-days; real deliversidemgtial pemnit electricity charges; real personal ince
per household.

Commercial Demand:The primary determinants of commercial electridgmand in a region a
employment, hoursvorked or real wage disbursements in commercigll@yment (as a proxy for commerc
sector output); cooling degree-days; heating dedass; real commercial-sector pamit delivered electricit
charges; self-generating capacity in the commesgats. Autonomous trends in commercial electricity
intensity are additional factors in commercial datheelated to commercial building shell efficierssiaverag
commercial floor-space per unit of output, and petien of electricity-using equipment icommercie
establishments.

Industrial Demand: The primary determinants of industrial electriciemand in a region a
employment, hours worked or real wage disbursemantmdustrial employment or industrial output
measured by the Federal Reserve Board; real inaluséctor per unit delivered electricity charges; tw
degree-days; heating degree-days; getferating capacity in the industrial sector. Awtmous trends
industrial electricity use intensity are additiofi@attors in indistrial demand related to energy efficiency tre
in industrial processes and equipment, shifts gioreal industrial output patterns among industrgtees o
varying levels of electricity use intensity per wiof output, and penetration of general electricigync
equipment in industrial establishments.

Other Demand:Other electricity demand in a region, which corssdt electricity sales not designa
as residential, commercial or industrial (municipghting and other general service as vealltransportatio
for examples), is assumed to be determined by gegeswth of economic activity in the region, asasgre:
by gross regional product or other aggregate agtimeasures. Also seasonal factors are importdatrdaant
of demand in certain regions.

The abovdisted demands for electricity relate to retailesalor sales distributed by local distribu
companies, either for own account or for the actairindependent service providers. Two other de
components are: electrigitgenerated by and consumed by an entity or facituch as an industr
establishment (with either combined heat and po(@HdP) or electrimnly generating capability) or
commercial facility such as a University or othenrindustrial facility; eletricity generated by one entity ¢
delivered directly to another entity, by-passintaitedistribution. The bulk of such naetail demand is in tt
industrial sector (approximately 2 percent in 2002) RSTEM, the non-retail component of electyicdeman:
is treated separately and at the national level.

The consumption equations are specified in term¥IWHR per day per month. The generic regi
model with the sectoral components or modules earepresented as:
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A (L)EXRCP/HHT [ f (ESRCU/CPI,PY/HH;PrO,PNG, | [
Eshr,HDD,CDD) g

A, (L)EXCMCP f.(ESCMU / CPI,GSP, EESPP,CW Cshr,,
=| PrO, PNG,HDD CDD) +le

A(L)EXICP f,(ESICU /WPI,IP,EESPP, GSP,CW,
Cshr, PrO, PNG,HDD,CDD) e
A(L)EXOTP | |  f,(ESOTU/WPI,GSP;HDD,CDD) | |e, |

EXTCP = EXRCP + EXCMP + EXICP + EXOTP .

There are four estimated equations and one idefiatitiotal consumption. The equations are timees
models. For example, the A(L) terms can imply bethular and seasonal autoregressive componergs.d
the right hand side variables are included in thecsication as well. Appendix 3 containsglossary of th
variables in the specification.

Section 3.2.3 Detailed Descriptions of the Residential and Commercial Equations

The residential electricity consumption demand ei®dare estimated ugjnordinary least squar
Aggregate sales in BkWh in a month are dividedhgyrtumber of days in the month. The dependenthiarie
in terms of daily consumption (EXRCP) per househ@HALLC). These two transformations are base
intuitive reasoningand help control for heteroscedasticity in the rhignmodels. Households are though
reflect the number of customers. A different equats estimated for each region and the particstites. The
have similar features, but vary for reasons rel&dedeographical location, weather, and access listitute
energy sources like natural gas and heating oibvBés a generic description of the residential stamptior
per household per day equations.

The residential consumption series has two digtiadime series properties in most regions. TlaeE
two seasonal cycles per year, one for cooling énsiiimmer and the other for heating in the wintbe matur
of the cycles and their peaks differ. In addititnere appears to be some trend indgbesumption series. T
specification of the RSTEGC equations differs from the current aggregatell&TEO model in that seaso
dummy variables and a deterministic time trendrexeincluded in the equations. Consumption per abols
per day is transformed into natural logarithms.

The residential consumption series is stetionary. There is a question of whether theesear
integrated and what the appropriate specificatormhis version of the RSTEM treats the order irgggn a:
following an annual seasonal cytl&he data is first transformed into natural lotaris and then the fil
difference at the annual frequency is calculatdds @ppears to produce a stationary series for limgde

The consumption series are obtained from meplo monthly sales, but are not strictly relate:
consumption in the month they are reported. Reda#des are based on an eeported basis by billing cyc

® Unit root tests for a sample of series were perfat at both the zero and annual frequency weremmeet! and
appear to support this specification. A more thgtoanalysis of the data is expected in future vessiof the
model.
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rather than calendar months. Thus a particular m®relectricity sales volume representsigamption b
customers for the current month and part for tlewipus month.

Electricity prices per kwh (ESRCU) are enteredhi@ models with a onmonth lag to more accurat
reflect the prices that consumers know they pale data is first transfmed into natural logarithms and tt
the first difference at the annual frequency iculgited. Several regions had a sizable portionoofsghold
using natural gas (NGRCU) for heating and hot watss based on the Residential Energy Consun
Survey This survey also shows that heating oil (D2RCYM@&s an important heating fuel in the Northe
The prices of natural gas and heating oil werestest these equations. The Consumer Price Indei2(0B) is
used to deflate the retail price series unlessraike specified, to remove inflation effects.

Population weighted cooling degree-day and heatiteggreeday series, ZWCD and ZW}F
respectively, are used to capture weather eff@ttey are incorporated in the equation specificatiothree
ways. First, the annual change in the number ofimp@nd heating degresays is consistent with the ann
difference of the dependent variable. The actueéllés considered as well. In addition, the degtag-
measures are interacted with the price seriesfral regions to capture the joint sensitivityhtese series.

Household real disposable income (PY) effects amoathly basis are assumed to be small, if not
The nominal disposable personal income series flatdd by the Consumer Pridadex (CP12000). Annu
changes in income per household were includedeimtbdels, but for the most part did not providel@xatory
power. Also, real disposable income is included ibudget share term to capture a possible longrarrol
correction component to consumption demand.

The specifications for every region included arceleity budget share variable. The budget she
calculated as the monthly household electric biMided by the household disposable income, (EXF
ESRCU* ZSAJQIE)/PY. Consumption per day is rescaled by the g&ysmonth to obtain total sales. T
expression is appealing from economic theory. Alfsis, consistent with an error correction repreéagan fol
integrated series and the concept of cointegratitmuseholds have a desired or equilibrium budget :
allocated to electricity services. If expenditueaseed that level or share, because of higherpacafall in
income, this will slow down the growth in consunaptiof electricity. The budget shameasure was conside
at the one- month and owear lag; in some cases the change in budget skiarghe previous year provide
valid simplification. The annual lag appears tahee more important in general.

Monthly dummy variables are not usedthe residential consumption models, because ffeet® ar
accounted for through the annual differencing asd of the cooling degree-day and heating dedase-
variables. However, dummy variables have been pwated to capture outlier effects framvere weather a
possible measurement error in the data.

The commercial electricity consumption demand medek estimated using ordinary least squ
Aggregate sales in X BkWh are divided by the nundfatays in the month. The dependent variabli@ iterm:
of daily consumption (EXCMP=EXCM/ZSAJQUS). A differt equation is estimated for each region an
individual states. They have similar features, it vary for reasons related to geographical looa
economic activity, weather, and acee® substitute energy sources like natural gatovBes a generi
description of the commercial consumption per dayadions.

The primary determinants of commercial electricigmand in a region are: employment and or
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wage disbursements in commercial employment (asogyfor commercial sector output); cooling degree-
days; heating degree-days; real industrial-seaoiupit delivered electricity charges, and natges prices.

The commercial consumption series has two dist@dime serieproperties in most regions similal
the residential series, but perhaps not as promalnthere are two seasonal cycles per year, oneofdinc
and the other for heating in the winter. The natfrthe cycles and their peaks differ. In addititrge appeal
to be some trend in the consumption series.

The commercial consumption series are stationary. There is a question of whether theesear
integrated and what the appropriate specificaoilnis version of the RSTEM-EC treats mosioag with the
order of integration as following an annual seabopele’. The data is first transformed into natural lotamis
and then the first difference at the annual fregyés calculated. This appears to produce a statjoseries fc
modeling. There may be 1-2 exceptions where only a firseddifice is used.

Real Electricity prices per kWh (ESICU) are entere the models with a omaonth lag to mot
accurately reflect the prices that consumers kiey paid. The data is first transformiatb natural logarithrr
and then the first difference at the annual fregyeis calculated. Several regions had a sizabl¢igmooi
commercial firms using natural gas (NGRCU) accaydio the Commercial Buildings Energy Consumg
Survey. The retail emgy price series are deflated by the Consumer Rridex (CPI12000) or specified
relative terms.

Population weighted cooling degree-day and heatiteggreeday series, ZWCD and ZW}F
respectively, are used to capture weather eff@ttey are incorporatl in the equation specification in th
ways. First the annual change in the number ofitgand heating degregays is consistent with the ann
difference of the dependent variable. The actueéllés considered as well. In addition, the degtag-
measures are interacted with the price seriesfaral regions to capture the joint sensitivityhtese series.

There is no direct economic commercial or serviegt@ revenue or expenditure series. The lev
employment in the private serviceckm (EESPPC) serves as a proxy for the level ohemic activity in th
region. Electricity consumption per worker (EXCMIESPPC) is used to capture trends and/or corre
deviations in consumption from “equilibrium” consption. Another indicator flo“equilibrium” consumptio
is the ratio of electricity expenditures to labarsts ((EXCMP*ESCMU*ZSAJQUS)/ CWDSPPC). T
measure attempts to represent firms’ concerns @lative input costs. These expressions are appeabr
economic theory. Alsahey may be consistent with an error correctiomeggntation for integrated series
the concept of cointegration. Both measures wensidered in the general model specifications, fignoonly
one was necessary in the specific models. Thehlagavere entered with a one-yéay or as the change over
past year from the previous month.

Section 3.2.4 The Short-run and Long-run Elasticity Estimates.

The model specifications range from simple aut@egjve components with explanatory varialiteseason
differenced models with autoregressive componemtsd eaxplanatory variables. The residential mc

7 Unit root tests for a sample of series were perat at both the zero and annual frequency weremmeet! and
appear to support this specification. A more thgtoanalysis of the data is expected in future vessiof the
model.
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dependent variable is in terms of household etg@ttrconsumption per day. The commercial sectoreddpn
variable is in terms on consumpgtiper day. Below is a generic specification exanipleeasonal differenc
with autoregressive components at lags one ansesonal lag.

k

(1—LS)Inyt = c(2)(l—LS)L Iny, + c(3)(1—LS)LS Iny, +>cl)x,.; + &
i=4

where s = 12,i = 4,5,6,..k and j = 0,12,3,.p

Thex variables are explanatory variables like pricespemic activity like income, weather data
like heating-degree day and cooling-degree day,codimer deterministic variables. The short-run
elasticity for an explanatory variable like coolidggree days is given by

n% cop = C(4)*CDD,
The long-run elasticity for cooling degree dayegsial to

Zk:c(i)* CDD

1-c(2)(1- 1)L +c(J(2-1)L0

L
,7 Y,CDD T

Tables 3.2.1 and 3.2.2 present the price and inada®ticity estimates and the cooling-degree dalyhesating-
degree day elasticities respectively. ResultsHerMid-Atlantic region, East North Centriakgion, and Sou
Atlantic region are provided, because the incldge RIJM, ECAR, and SERC regions used in the EPAy
respectively.
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The signs on the elasticities are as hypothesiaddcanform to the first and second laws of demain@t is th
short-run elasticities are smaller than the longelasticities. In the shortin households and businesses ce
immediately respond to an increase in CDD and Hb&gause their stock and housing and building
efficiency and appliances are given. e progresses however, they adjust their houahthbuilding stock
and energy using appliances stocks. We note teaCBD effects appear larger in the Midantic and Sout
Atlantic region than in the East North Central cegiThis is likely due tohe greater summer cooling needs
lower heating needs with a warming temperature.

Table 3.2.1
Regional STEO Elasticity Estimates
Region Price Elasticities Income Elasticities
Short-run Long-run Short-run Long-run
East North Central  |-0.02 -0.06 0.34 1.04
Mid-Atlantic -0.03 -0.59 0.32 0.72
South Atlantic -0.05 -0.22 0.11 0.47
Table 3.2.2
Regional STEO Elasticity Estimates
Region Cooling Degree Day ElasticitiesHeating Degree Day Elasticities
Short-run Long-run Short-run Long-run
East North Central 0.05 0.23 0.18 0.37
Mid-Atlantic 0.33 0.56 0.13 0.28
South Atlantic 0.04 0.64 0.11 0.19
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Appendix 1: Summer Hypotheses

logLoad(i) C Tue Wed Thu Fri Sat Sun Holiday Jul Au g Sep
JunF JulF AugF SepF
Unrestricted Model JunF12 JulFr2 AugF"2 SepF 2
JunF13 JulF3 AugF"3 SepF"3
logLoad(i-1) logLoad(i-2) logLoad(i-3) logLoad(i-24 )

HO:1 There are no Day or Holiday effects Tue = Wed = Thu = Fri = Sat = Sun = Holiday = 0

HO:2 There are no Weekend or Holiday effects Sat = Sun = Holiday = 0

HO:3  There are no Weekend effects Sat=Sun=0

HO:4 There are no Sunday or Holiday Effects Sun = Holiday = 0

HO:5  There are no Weekend effects; Weekday effects are a Il the same Sat = Sun = 0; Tue = Wed = Thu = Fri

HO:11  There are no Weekend or Month effects; Weekday effe  cts are all the same Sat=Sun =Jul=Aug =Sep=0; Tue=Wed=Thu=Fri

H0:12  There are no Weekday effects Tue = Wed = Thu = Fri

HO0:13  There are no Weekday or Month effects; Weekend and  Holiday effects are the same Tue = Wed = Thu = Fri = Jul = Aug = Sep = 0; Sat = Sun = Holiday

HO:14  There are no Temp Level effects Jun F=Jul F= Aug F=SepF=0
H0:15 There are no Temp Level effects for June or Septemb  er

HO0:21  Temp Level effects for June and September are  equal; Temp Level effects for July and Augustaree  qual

Jun F=Sep ¥ Jul F=Aug ¥

H0:22  Temp Level effects for all months are equal Jun F=Jul F=Aug F =Sep F
H0:23  There are no Temp Squared effects Jun F2 = Jul ¥/2 = Aug ¥*2 = Sep F*2=0
H0:24  There are no Temp Squared effects for June or Septe  mber Jun 2 =Sep F*2=0

H0:25 There are no Temp Squared effects for June Jun F2

H0:31 Temp Squared effects for all months are equal Jun F2 = Jul 2 = Aug "2 = Sep F2

= = = = = N = N =
HO0:32 There are no Temp Level or Squared effects ::u,\nz: 0 JulF = Aug F = Sep F = Jun T2 = Jul Fr2 = Aug T2 = Sep
HO:33  There are no Temp Level or Squared effects for June  or September Jun F=Sep F=Jun F2=Sep F2=0
H0:34 There are no Temp Level or Squared effects for June Jun F=Jun F2=0

HO:35 There are no Temp Level or Squared effects for Sept  ember Sep F=Sep ¥2=0

HO:41  No Cubic Effects Jun F3 = Jul 3 = Aug F"3 = Sep F*3=0
HO:42  No Jun/Sept Cubic Effects Jun F/3 = Sep ¥"3 =0

HO0:43  Cubic Effects for Jun = Sep; Jul = Aug Jun F3 = Sep ¥3; Jul 13 = Aug F3
HO:44  Cubic Effects are the same across all months Jun F3 = Jul F73 = Aug F"3 = Sep T3

. N Jun F2 = Jul 2 = Aug "2 = Sep ¥2 = Jun ¥* 3 =Jul 3 = Aug
H0:45 No Squared/Cubic Effect FA3=Sep FA3=0
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Appendix 2: Winter Hypotheses

logLoad(i) C Tue Wed Thu Fri Sat Sun Holiday Feb Ma  r Dec
JanF Feb¥ Mar¥ DecF
Unrestricted Model JanF"2 FebF"2 MarF"2 DecF"2
Jan¥"3 Feb¥"3 MarF"3 DecF"3
logLoad(i-1) logLoad(i-2) logLoad(i-3) logLoad(i-24 )
| RestictedModels  specficaon

HO:1 There are no Day or Holiday effects Tue = Wed = Thu = Fri = Sat = Sun = Holiday = 0
HO:2 There are no Weekend or Holiday effects Sat = Sun = Holiday = 0

HO0:3  There are no Weekend effects Sat=Sun=0

HO:4 There are no Sunday or Holiday Effects Sun = Holiday = 0

HO:5 There are no Weekend effects; Weekday effects area Il the same Sat = Sun = 0; Tue = Wed = Thu = Fri

HO:11  There are no Weekend or Month effects; Weekday effe  cts are all the same = = = Tue =Wed =Thu= Fri
H0:12  There are no Weekday effects; Weekend and Holiday e  ffects are the same , Sat = Sun = Holiday
H0:13  There are no Weekday or Month effects; Weekend and  Holiday effects are the same Tue = Wed = Thu = Fri = Feb = Mar = Dec = 0; Sat = Sun = Holiday
H0:14  There are no Temp Level effects Jan ¥ = Feb ¥ =Mar ¥ = Dec F=0

HO0:15 There are no Temp Level effects for March or Decemb Mar F = Dec F =0

Ho:21 Temp Level effects for March and December are equal ; Temp Level effects for January and February are

equal Mar F = Dec F; Jan F = Feb ¥
H0:22  Temp Level effects for all months are equal Jan ¥ = Feb ¥ = Mar ¥ = Dec ¥
H0:23  There are no Temp Squared effects Jan ¥2 = Feb 12 = Mar ¥/2 = Dec ¥2=0
H0:24  There are no Temp Squared effects for March or Dece  mber Mar /2 = Dec 2 =0
H0:25 There are no Temp Squared effects for March Mar FA

H0:31 Temp Squared effects for all months are equal Jan ¥2 = Feb 2 = Mar ¥/2 ec 7
A 2 A
HO0:32 There are no Temp Level or Squared effects ::a,flzt 0 Feb ¥ = Mar ¥ = Dec ¥ = Jan ﬁ: 2=Feb  F12=Mar F12 = Dec
H0:33  There are no Temp Level or Squared effects for Marc  h or December Mar F = Dec F = Mar "2 =Dec ¥/2=0
H0:34  There are no Temp Level or Squared effects for Dece mber Dec F = Dec ¥2=0

HO0:35 There are no Temp Level or Squared effects for Marc Mar ¥ = Mar ¥/2 =0

HO0:41  No Cubic Effects Jan F3 = Feb F3 = Mar "3 = Dec ¥/3=0

HO0:42  No Jan/Dec Cubic Effects Jan F3 = Dec ¥/3=0
HO0:43  Cubic Effects for Jan = Dec, Feb = Mar Jan F/3 = Dec ¥"3; Feb ¥"3 = Mar ¥3
HO0:44  Cubic Effects are the same across all months Jan F"3 = Feb F"3 = Mar ¥"3 = Dec ¥3

Jan F2 = Feb FA2 = Mar F/2 = Dec F2 = " = 23 =
H0:45 No Squared/Cubic Effect an €l ar ec Jan ¥ 3 =Feb F3 = Mar

Final Report EPA Weather Effects on Electricity Hea Page 44 of 48



Appendix 3. RSTEM Data Sources and Descriptions

The historical energy data used to estimate theeioaime primarily from the IMDS electronic datahakhé
merges data regularly reported in several EIA paltbns: Petroleum Supply Monthly, Petroleum Marke
Monthly, Electric Power Monthly, Natural Gas Monthly, andMonthly Energy Review. Because of data limit
there are inconsistencies in the level of dis-aggfiien of each type of fuel. For example, elediyieind néural
demands are represented by market sector, butgaetmgroducts are generally represented only dsnattc
or for a combination of sectors (distillate andidaal fuel oil are exceptions). Markkdvel data are availak
the regulated industries (electricity and natues)gvhile productevel data are available for the petroleum
markets, particularly for data frequencies higiantannual.

These energy price and volume data are suppleményteéta from outside sourcesptimost common are
below.

«  Employment and Earnings, Bureau of Labor Statistics, U.S. Department didra

« Industrial Production, Board of Governors, U.S. Federal Reserve System.

» Monthly Labor Review, Bureau of Labor Statistics, U.S. Department didra

+  Monthly State, Regional, and National Heating/Cooling Degree-Days Weighted by
Population, National Oceanic and Atmospheric Administrati&h,S. Department of
Commerce.

« National Income and Product Accounts of the United States, Bureau of Economic
Analysis, U.S. Department of Commerce.

« Survey of Current Business, Bureau of Economic Analysis, U.S. Department of
Commerce.

Most of the data sources provide monthly data ared used directly. Quarterly data are

interpolated into monthly series. These data amgsily for macroeconomic variables in the
national income and product accounts and gross gtahestic product accounts.
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Simple Glossary of Terms

Acronyms Description

EXRCP Residential electricity consumption per day
EXCMP Commercial electricity consumption per day
EXICP Industrial electricity consumption per day
EXOTP Other electricity consumption per day

EXTCP Total electricity consumption per day

HH Number of households

ESRCU Residential retail electricity per kwWh

ESCMU Commercial retail electricity per kWh

ESICU Industrial retail electricity per kWh

ESOTU Other retail electricity per kWh

PY Disposable personal income

CPI Consumer price index: urban households, Bagé 20
Pro Price of home heating oil, $/gallon

EShr Electricity expenditure budget share

Cshr Electricity cost per labor costs

EESPP Number of Employees: Commercial or Industrial
GSP Gross State Product: Region-wide or Industrial
IP Industrial Production: Electricity Weighted

CwW Wages and Salaries: Commercial or Industrial
WPI Wholesale Price Index, Base 2000

PNG Price of Natural Gas

HDD Heating degree-days per month

CDD Cooling degree-days per month
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Appendix 4: The General-to-Specific Modeling Approach

The General to Specific Approach follows a sepurficiples laid out by Haavelmo in 194 4Heintrodt
econometricians to the general principles of aniatygtatistical models instead of applying methods.

The implication of applying statistical models westi of applying methods is that the researcherldhme mc
based on systems of equatioMARs have a number of advantages in this regareyTalow for dyni
interactions and correlations among variables witsche basis of applied times econometricsci8 scientis
definition struggle, because their data does nofarm to the hypothetical casmowing the true data gent
process. Their data has been collected or simuiateghtrolled experiments.

The applied econometrician must use a probabiliyr@ach to their craft. We staby assuming a prob
structure to the data. This is effectively conjeicty the existence of a data generating procesedfterDGP)
reality the DGP is unknown. The general princiflaggest an iterative approach or progressive resstdeg

e Conjecture the DGP

« Develop the associated probability theory

e Use theory for modeling the empirical evidence

< Revise the starting point when the results do ratthconsistently.

The strategy involves recent development in ecatnes known as thdheory of Reduction wt
motivates the General-to-Specific Approach.

Approaches and or Methodology for Research

Economists Statisticians

Formulate an economically well-specifiefformulate a statistically well-specified
model as the empirical model. model for the data.

Apply statistical techniques to estimate th&nalyze the statistical model to answer the

parameters. economic questions of interest.

Methodology for Research

Use statistics passively as a tool to sqr¢atistical model is taken seriously and
derived results. used actively as a means of analyzing |the
underlying DGP of the economijc

phenomenon.

8 Much of the discussion below of Haavelmo's gengmanhciples has benefited from K. Juselius’ apglieconometrics bo
manuscript, chapter 1 Introduction. Oxford Univigréiress expects to publish the book in 2006.
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Empirical models are at best approximations oftthe data generating process (DGP). The economei
should exhibit certain desirablegperties that render it a valid representatiorhefttue DGP. Hendry (199
Mizon (1995) suggest the following six criteria agding to the General-to-Specific or LSE methodglog

1. There are identifiable structures in the model #ratinterpretable in light of economic theory.

2. The residuals must be white noise for the modekta valid simplification of the DGP.

3. The model must be admissible on accurate obsengtior example nominal interest rates and f
cannot be negative.

4. The conditionng variables are at least weakly exogenous fomp#drameters of interest in the mo
Forecasting models require strong exogeneity, wioley models require super exogeneity.

5. The parameters of interest must be constant owee tnd remain invarianbtcertain classes
interventions. This relates to the purpose of tioel@hin the previous criteria.

6. The model must be able to explain the results friwval models; it is able to encompass them.

A model that has these six properties is saicetodngruent

The sector demand model specification begins biyaing the time series properties of the energy
economic variables. Autocorrelation functions aadtipl autocorrelation functions of the serieslogj levels
first differences, and annudifferences are examined to look for dynamic grai$ and integration. Plots of
series in (log) levels, first differences, annuiffledences, and monthly seasonal stacks are exanfiareérends
seasonal effects, shifts in the data generatinge®pand outliers. Unit root tests are conductedest fo
(seasonal) integration and cointegration. The fplas and approach have not been fully implemeirieithe
RSTEO modeling effort to-date because of time asdurce constraints. But the work is on-going.
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