7.53. Draw the shear and moment diagrams for the beam ABCDE. All pulleys have a radius of 1 ft. Neglect the weight of the beam and pulley arrangement. The load weighs 500 lb.

Support Reactions: From FBD (a).

\[\sum M = 0; \quad E_x (15) - 500 (7) = 0 \quad E_x = 333.33 \text{ lb} \]
\[\sum F_y = 0; \quad A_y + 333.33 - 500 = 0 \quad A_y = 166.67 \text{ lb} \]

Shear and Moment Diagrams: The load on the pulley at D can be replaced by equivalent force and couple moment at D as shown on FBD (b).
7-54. Draw the shear and moment diagrams for the beam.

\[7 \text{kN} \quad 12 \text{kN} \cdot \text{m} \]

\[2 \text{m} \quad 2 \text{m} \quad 4 \text{m} \]

\[\sum M_b = 0; \quad \sum F_y = 0 \]

\[F_c = \frac{7 \times 2}{2} - 500 \times 2 = 0 \quad F_c = 625 \text{ N} \]

\[\sum F_y = 0; \quad A_x + 625 \left(\frac{2}{3} \right) - 500 = 0 \quad A_x = 625 \text{ N} \]

Support Reactions:

\[F_c = 625 \text{ N} \]

\[A_x = 625 \text{ N} \]

\[V(N) = 625 \text{ N} \]

\[M(N \cdot m) = 750 \text{ N} \cdot \text{m} \]

\[\sum M_C = 0; \quad 500 \times 3 = 250 \times 2 + F_c \times 2.5 \]

\[F_c = 625 \text{ N} \]

7-55. Draw the shear and moment diagrams for the beam.

Support Reactions:

\[\sum M_C = 0; \quad \sum F_y = 0 \]

\[A_x + 625 \left(\frac{2}{3} \right) - 500 = 0 \quad A_x = 625 \text{ N} \]

\[V(N) = 625 \text{ N} \]

\[M(N \cdot m) = 750 \text{ N} \cdot \text{m} \]

\[\sum M_C = 0; \quad 500 \times 3 = 250 \times 2 + F_c \times 2.5 \]

\[F_c = 625 \text{ N} \]
7-64. The beam will fail when the maximum moment is \(M_{max} = 30 \text{ kip}\cdot\text{ft} \) or the maximum shear is \(V_{max} = 8 \text{ kip} \). Determine the largest distributed load \(w \) the beam will support.

\[
V_{max} = 4w; \quad 8 = 4w
\]
\[
w = 2 \text{ kip/ft}
\]
\[
M_{max} = -6w; \quad -30 = -6w
\]
\[
w = 5 \text{ kip/ft}
\]
Thus, \(w = 2 \text{ kip/ft} \) Ans.

7-65. The beam consists of two segments pin connected at \(B \). Draw the shear and moment diagrams for the beam.

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
12.19. The beam has the rectangular cross section shown. If $P = 15 \text{ kN}$, determine the maximum bending stress in the beam. Sketch the stress distribution acting over the cross section.

Absolute Maximum Bending Stress: The maximum moment is $M_{\text{max}} = 0.750 \text{ kN} \cdot \text{m}$ as indicated on moment diagram. Applying the fixture formula

$$
\sigma_{\text{max}} = \frac{M_{\text{max}} c}{I}
$$

$$
= \frac{0.750 \times 10^6 \times 0.05}{\frac{1}{12}(0.05)^4 (0.17)}
$$

$$
= 9.00 \text{ MPa} \quad \text{Ans}
$$
13-18. The supports at \(A \) and \(B \) exert vertical reactions on the wood beam. If the allowable shear stress is \(\tau_{\text{allow}} = 400 \text{ psi} \), determine the intensity \(w \) of the largest distributed load that can be applied to the beam.

Support Reactions: As shown on FBD.

Internal Shear Force: The maximum shear force occurs at the region \(0 \leq x < 1 \text{ ft} \) where \(V'_{\text{max}} = 0.750 \text{w} \).

Section Properties:

\[
I_{\text{ax}} = \frac{1}{12}(2)(8^3) = 85.333 \text{ in}^4
\]

\[
Q_{\text{max}} = 3\gamma A = 2(150)(2) = 16.0 \text{ in}^3
\]

Allowable Shear Stress: Maximum shear stress occurs at the point where the neutral axis pass through the section. Applying shear formula:

\[
\tau_{\text{max}} = \frac{V'_{\text{max}}}{I_{\text{ax}}} \cdot \frac{1}{\frac{0.750 \text{w}}{16.0}} \cdot \frac{400 \text{ in}}{85.333(2)}
\]

\[w = 5689 \text{ lb/ft} = 5.69 \text{ kip/ft} \quad \text{Ans} \]

13-19. Railroad ties must be designed to resist large shear loadings. If the tie is subjected to the 30-kip rail loadings and the gravel bed exerts a distributed reaction as shown, determine the intensity \(w \) for equilibrium, and find the maximum shear stress in the tie.

Equations of Equilibrium:

\[+ \sum F_y = 0; \quad 4.50w - 30 - 30 = 0 \quad w = 13.33 \text{ kip/ft} = 13.3 \text{ kip/ft} \quad \text{Ans} \]

Internal Shear Force: As shown. \(V_{\text{max}} = 20.0 \text{ kip} \).

Section Properties:

\[
I_{\text{ax}} = \frac{1}{12}(4)(8^3) = 144 \text{ in}^4
\]

\[
Q_{\text{max}} = 3\gamma A = 1.5(160)(3) = 36.0 \text{ in}^3
\]

Maximum Shear Stress: Maximum shear stress occurs at the point where the neutral axis passes through the section. Applying the shear formula:

\[
\tau_{\text{max}} = \frac{V'_{\text{max}}}{I_{\text{ax}}} \cdot \frac{1}{\frac{20.0(10^3)}{144(8)}} \cdot 625 \text{ psi} \quad \text{Ans} \]