Advanced Numerical Models in Practice and Elastoplasticity of Unsaturated Soils

K.K. (Muralee) Muraleetharan

School of Civil Engineering and Environmental Science
University of Oklahoma, Norman, Oklahoma, U.S.A.

Workshop on Nonlinear Modeling of Geotechnical Problems:
From Theory to Practice
Johns Hopkins University, Maryland
November 3-4, 2005
Outline

- Advanced Numerical Models in Practice
 - A personal experience: Port of Los Angeles’ Pier 400 Project
 - What are the impediments?
 - How can we overcome these?
- SWCC Using an Elastoplastic Framework
 - Model development
 - Validation
- TeraScale_Dysac: A parallel, 3-D, fully coupled computer code
Port of Los Angeles’ Pier 400: Artist’s Impression (1990)
- 235 ha (580 acres) of new land
- 6.1 km (20,000 ft) of rock dikes
- 46 million m³ (60 million yd³) of dredged material (about 50% of the material dredged for the Suez Canal!!!)

Pier 400: Port of Los Angeles
(June 2001)
Pier 400: 2003 (?)
Cargo Handling Cranes at Pier 400

- Each crane weighs 1,450 tons (or 2.9 million lb)
- 100 ft gauge (rail spacing for supports)
- Total lift capacity is 182 ft.
Maximum Allowable Lateral Dike Movement = 1 m

A cross section through a typical wharf (Phase 1 Container Wharf, Pier 400, Port of Los Angeles)
POLA’s Seismic Criteria

- Two levels of earthquakes
- Probabilistic Seismic Hazard Analysis (PSHA)
- OLE - Operating Level Earthquake
 - Minor non-structural damage to wharf structures
 - Should remain in service
 - PGA = 0.28 g (Return Period = 72 years)
- CLE - Contingency Level Earthquake
 - Some damage to wharf structures expected
 - Total collapse should be prevented
 - Container cranes should be operational after repairs
 - PGA = 0.52 g (Return Period = 475 years)
- Primary hazard from the Palos Verdes Fault
- Some contribution from the Newport-Inglewood Fault
Pier 400 Conceptual Design

- Pier 400 Design Consultants (A joint venture between Frederic R. Harris, Inc. and Moffat & Nichol Engineers)
 - The Prime Consultants

- Fugro West, Inc., Ventura, CA
 - Geotechnical investigations
 - Initial slope stability analyses/lab testing

- Earth Tech, Irvine, CA
 - Dr. (Arul) K. Arulmoli – Project Manager
 - Coordinating the centrifuge testing
 - Lab testing
 - FEM Analyses

Note: Actual Design (2000-2004??): Earth Mechanics, Inc.
Dr. (Arul) K. Arulmoli – Project Manager
Pier 400 Project

- Part of POLA’s 2020 plan

- Cost: Landfill = **$500 million**, Infrastructure = **$300 million**

- Seismic deformations of the dikes and landfill is a major design concern

- **DYSAC2** (Muraleetharan et al. 1988) was used for the seismic analyses in the conceptual design phase
 - Bounding surface elastoplastic constitutive models (Dafalias and Herrmann 1986; Yogachandran 1991)

- Centrifuge model tests were performed to validate DYSAC2 as well as to study the potential deformation mechanisms

- DYSAC2 results were combined with traditional embankment analyses for the final design
Centrifuge Model Testing Program

- Specifications provided by Pier 400 Design Team
- University of California, Davis
 - Arulanandan, Zeng, et al.
- Caltech
 - Scott, Hushmand, et al.
Pier 400 Centrifuge Model Configurations
Model Configuration 3: U.C. Davis

- Centrifugal Acceleration = 75 g
- Model Height = 0.140 m
- Prototype Height = 10.5 m
Model Configuration 1: U.C. Davis

Before Shaking

After Shaking
a. **Centrifuge Test**

b. **DYSAC2 Prediction**
Pier 400 Cross Sections: DYSAC2 Analyses

Without Piles

With Piles
What are the impediments to using advanced numerical methods in practice?

- **Threat of litigation**: Nobody wants to try something that has not been tried before.

- **Lack of understanding of benefits among practicing engineers and review agencies**.

- **Codified nature of the structural engineering practice**: E.g., Advanced analyses are allowed, but loads can be reduced only 20%.

- **Lack of collaboration between structural and geotechnical engineers**: For structural engineers soil looks like a spring and for geotechnical engineers structures looks like sticks (beams and columns based on simple bending theories).

- **Determination of material properties for elastoplastic models**:
 - The constitutive model development has outstripped the ability of engineers to determine properties for these models.
 - Extensive laboratory testing is not possible for all projects.
How can we overcome these impediments?

- Educate the practicing engineers and **review agencies** such as Caltrans: Workshops etc.

- **Find early adapters and big projects:** Port of Los Angeles
 - Remember don’t promise cost savings (not always possible), just better design and more in sight into the behavior

- **Contribute to standards and code developments**

- **Work closely with structural engineers**
 - E.g. EMI, CH2M Hill
 - Educate structural engineers and listen to their needs and concerns

- **Develop better in situ testing techniques to determine the elastoplastic model parameters.**
Soil Water Characteristic Curves (SWCCs)

A Fine Ottawa Sand (SP, $D_{50} = 0.12$ mm)

Chen et al. (2005): Using an automated parallel miniature pressure cell system
• **Bounding Surface Plasticity Theory (Dafalias and Popov 1976)**

Bounding Curves:

\[n^w = n_0^w - a \cdot \tan^{-1} \left[e^{(s-b)} - e^{-b} \right] \]

\[n^w = n_0^w - a \cdot \tan^{-1} \left[e^{(s-c)} - e^{-c} \right] \]
SWCC (cont.)

Predictions

![Graph showing soil water characteristic curve (SWCC) predictions and measured data. The graph plots suction (kPa) on the y-axis against volumetric water content on the x-axis. The bounding curves, predicted data, and measured data are indicated.]
La Conchita Landslide, 1995
Courtesy: U.S. Geological Survey

Failure at the same place again in 2005!!!!!
Embankment No. 3: With Water Infiltration

- Complete failure around 35 g (Height = 6 m)
A Finite Element Framework Based, Parallel, Fully Coupled 3-D Analysis of Soils (saturated and unsaturated) and Structures

Acknowledgement: NSF, Information Technology Research (ITR) Grant No. CMS-0112950 (Program Director: Dr. Rick Fragaszy)