Spring 2009
560.741 Theoretical and Computational Plasticity
Instructor: A. Anandarajah, Professor of Civil Engineering (*6-8682, Rajah@jhu.edu)

Recommended Texts
- Plasticity Theory by Jacob Lubliner, 1990, Publisher: Pearson (QA931 .L9391 1990)

Course Outline
1. Mathematical preliminaries
 - Basic tensor operations
 - Analysis of stresses and strains; Invariants of stresses and strains
 - Finite element analysis of solids
2. Elastic constitutive relations
 - General relations for isotropic materials
 - Two-dimensional relations (plane strain, plane stress and axi-symmetric)
3. Constitutive modeling
 - Introduction
 - Classes of behavior
 - Theory of rate-independent plasticity
 - Examples of yield surfaces
 - Examples of hardening rules
 - Solution uniqueness
4. Nonlinear finite element analysis
 - Newton’s method
 - Modified Newton’s method
 - Application of Newton-Raphson method to nonlinear finite element analysis
5. Integration of elasto-plastic constitutive models
 - Problem statement
 - Continuum versus consistent operators
 - Euler methods of integration
 - Mises constitutive model
 - Elastic predictor-plastic corrector methods
 - Methods of integration
 - Two-step Euler method
 - Cutting-plane method
 - Closest point projection method (CPPM)

Grading: Projects and presentations: 50%, Final Exam: 30%, Homework: 20%