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Abstract 

Under load thin-walled members potentially have cross section instability (i.e., local 

and/or distortional) in addition to global instability (Euler buckling) of the member. To 

assess the stability of thin-walled members requires advanced tools, such as the finite 

strip (FSM) and/or finite element methods (FEM). However, commonly available FSM 

solutions are only applicable to simply supported ends, while FEM analysis, using plate 

or shell elements for both elastic buckling and nonlinear collapse analyses, is limited by 

the subjective and laborious nature required in identifying the characteristic local, 

distortional, and global buckling modes.  

In this thesis new FSM implementation is developed to account for general end 

boundary conditions: pin-pin, fixed-fixed, fixed-pin, fixed-free, and fixed-guided and 

these solutions are used to extend the constrained Finite Strip Method (cFSM). The full 

derivation for a FSM stability solution that applies to general end boundary conditions is 

provided. Verification problems are provided against eigenbuckling shell finite element 

analysis solutions implemented in ABAQUS. Particular attention is paid to the number of 

longitudinal terms required, spring modelling, and the possibility of an element-wise 

FSM. In addition, the existing cFSM solutions for pin-pin boundary conditions are recast 

into the new generalized notation for general end boundary conditions. Formulation of 

the constraint matrices that form the basis for modal decomposition and identification in 

cFSM is provided with full derivation. Orthogonalization and normalization of the bases 

are discussed in detail. Recommendations are provided regarding the choice of basis and 

normalization.  
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To address issues in shell FEM solutions for linear elastic buckling analysis, an 

automatic mode identification method is proposed which uses a special system of modal 

base functions, referred to as the cFSM base functions. After extrapolating the cFSM 

base functions to the FEM context, a sizeable minimization problem is completed for 

assigning the contributions to the fundamental buckling deformation classes. Modal 

identification results of FEM solutions are validated against FSM solutions. A set of 

generalized cFSM base functions are proposed to handle all end boundary cases, such as 

mixed boundary conditions and semi-rigid boundary conditions. Moreover, modal 

identification for collapse analysis of thin-walled members modelled using material and 

geometric nonlinear shell finite element analysis is studied. The method enables the 

quantification of failure modes and tracks the evolution of the buckling classes up to and 

through collapse. 

For design purposes, application of cFSM and modal identification with the Direct 

Strength Method is proposed. Conclusions and recommendations for future research are 

provided. 
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Chapter 1 Introduction 

 

 

1.1  Cold-formed steel members 

As one of the two primary constructional steel types, cold-formed steel is widely 

used as secondary load-carrying members in tall buildings such as roof and floor decks, 

steel joists, wall panels, window frame and entrance structures, etc. [1] or even as 

primary load-carrying members in low-rise and modest midrise buildings. Cold-formed 

steel members are usually created by the working of sheet steel using stamping, rolling, 

or presses to deform the sheet into a usable product [2]. As the name indicates, different 

from the other steel construction material - hot-rolled steel, the manufacturing of cold-

formed steel products occurs at room temperature. The material is plastically deformed to 

shape, thus the material‟s yield strength increases along with residual stresses and strains, 

while ductility decreases modestly [3]. 

One of the distinct characteristics of cold-formed steel is the variety of cross section 

shapes. Due to the relatively easy method of manufacturing, the cross section can be 

formed into any desired shape to accommodate the demands of optimized design in 

structural applications for economical purposes.  Figure 1-1 shows an assembly of cold-

formed steel cross section shapes used in practice.  Some typically used cross section 

shapes are shown in Figure 1-2. 

Cold-formed steel also offers many other advantages including lightness, high 

strength and stiffness, ease of prefabrication and mass production, uniform quality, fast 
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and easy installation, and economy in transportation and handling. Therefore, cold-

formed steel members have been widely used in buildings, bridges, storage racks, grain 

bins, car bodies, railway coaches, highway products, transmission towers, transmission 

poles, drainage facilities, various types of equipment and others [3]. 

 

Figure 1-1 A variety of cold-formed steel cross sections [3] 

Cold-formed steel has taken upon a significant market share among construction 

materials because of its advantages and the industry-wide support provided by various 

organizations that promote cold-formed steel research and products, including codes and 

standards development that is supervised by the American Iron and Steel Institute (AISI) 

[4]. 

http://en.wikipedia.org/wiki/Grain_bin
http://en.wikipedia.org/wiki/Grain_bin
http://en.wikipedia.org/wiki/Drainage
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Figure 1-2 Commonly used cold-formed steel shapes [3] 

1.2  Numerical modeling of elastic buckling analysis 

Due to the high slenderness ratio of each individual component comprising a thin-

walled member, it is common that these thin members buckle at a stress level less than 

the yield point if they are subjected to loading cases that may generate compression stress 

in the cross section. Thus, buckling phenomena are paid special attention to in the design 

of thin-walled structures.  

Current design specifications (e.g., for cold-formed steel) [4-6] all tackle the strength 

prediction in member design from the investigation of the elastic buckling based on 

rational analyses (numerical or analytical), then employ empirical equations based on 

experimental data to predict the design strength of the member. The prediction of the 

elastic buckling plays a central role in the design procedure. In particular, for open cross-

section cold-formed steel members (e.g., C, Z, hat, etc.), usually, three basic classes of 
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buckling may be encountered: local (plate), distortional, and global (Euler) buckling. As 

reflected in current design specifications, each buckling mode is treated individually 

because of their significantly different post-buckling behavior, further some modes are 

considered interactively since they may be coupled with one another. 

Many analysis methods for elastic buckling prediction are also available, such as the 

Finite Element Method (FEM), Finite Strip Method (FSM), constrained Finite Strip 

Method (cFSM), Generalized Beam Theory (GBT), and analytical solutions. Analytical 

solutions, based on simplified models, e.g., for distortional buckling [7-10], are 

inherently limited in their applicability and so can never provide the general methodology 

sought here. Thus, the focus of this research is on the aforementioned numerical methods. 

1.2.1 Finite Strip Method 

The idea behind the finite strip method is to reduce the number of partial differential 

equations that must be solved when modeling. The reduction is achieved by assuming the 

separation of variable approach can be applied in expressing the interpolation functions 

of the unknown displacement [11]. More specifically, instead of discretizing the member 

in the longitudinal direction, FSM uses specially selected shape functions to interpolate 

the longitudinal field, while common polynomial shapes are still used for the transverse 

field, as is common in FEM. Therefore, a thin-walled cross-section is discretized into a 

series of longitudinal strips (or elements) opposite to finite element discretization, see 

Figure 1-3. Some obvious limitations of FSM are that the cross section has to be uniform 

along the length and depending on the formulation the application is only suitable to 

prismatic cross sections. 
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(a) FEM mesh  (b) FSM mesh 

Figure 1-3 Typical FEM versus FSM mesh for thin-walled lipped channel 

Since the longitudinal field is interpolated by longitudinal shape functions, the 

choice of suitable interpolation functions for a strip play a key role in the application of 

FSM.  There are several options available as interpolation functions dependent on the 

boundary conditions as well as the nature of the problem. For instance, functions sought 

from the vibration eigenfunctions are commonly used, which is a combination of 

continuously differentiable harmonic and hyperbolical series that are chosen to satisfy the 

end boundary conditions of the strip. Consequently, the stiffness matrices can be 

formulated explicitly without numerical integration, and the FSM is often referred to as 

the semi-analytical finite strip method. Similarly, employing only trigonometric functions 

(e.q., [12]) satisfying the boundary conditions a priori is proven to be effective as well. 

Other shape functions such as buckling eigenfunctions from the mode shape, exponential 

functions, and decaying power series [11] are all valid choices. In addition, spline 

functions [13] and computed shape functions [14] have further increased the flexibility in 

the choice of interpolation functions especially in dealing with multi-span or column-

supported structures.  Once the displacement field has been fully defined, the traditional 

formulation of the stiffness matrices (elastic and geometric stiffness) can be performed 

based on the selected plate theory (Kirchhoff or Mindlin). 
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The semi-analytical finite strip method was originally developed by Cheung for the 

stress analysis of a plate in bending [15]. Cheung further extended the method by 

including the membrane deformation in addition to the plate bending [16]. Later, the 

semi-analytical FSM has been applied by many researchers to vibration and stability 

analysis in many structural applications such as shell structures [17, 18], bridges [16, 19, 

20], and tall building [21-23]. 

In stability analysis, for examining instabilities in a thin-walled member under 

longitudinal stress (axial, bending, and/or warping torsion), the semi-analytical FSM has 

been widely used. In particular, the application to members with simply supported ends 

results in an efficient solution and the “signature curve” of the stability of a member in 

terms of buckling half-wavelength vs. buckling load as shown in Figure 1-4 for example, 

as popularized by Hancock [24] and implemented in the open source program CUFSM 

[25]. 
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Figure 1-4 The cross-section stability “signature curve” from an FSM solution 
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Minima in the signature curve, as shown in Figure 1-4, indicate the lowest critical 

load at which a particular buckling mode occurs, and also the half-wavelength at which 

that mode will repeat within any physical member length. Traditionally, the first 

minimum is local buckling, the second distortional buckling, and global buckling is 

identified in the descending branch of the curve at a longer half-wavelength equal to the 

global unbraced length of the member. 

Therefore, even though the finite element method has dominated computational 

structural analysis, the finite strip method continues to have its role due to its own merits 

such as ease of modeling and computational efficiency. 

1.2.2 Constrained Finite Strip Method 

The constrained FSM (cFSM) was originally derived from the semi-analytical FSM 

by Ádány and Schafer [25-28]. The key feature of cFSM is that based on mechanical 

criteria [26, 28], the general displacement field d (or buckling mode ) may be separated 

into G, D, L, and ST/O subspaces corresponding to the Global, Distortional, Local and 

Shear and Transverse extension or Others deformation modes. Mathematically, any 

general displacement field may be written as:  

 MM dRd   (1-1) 

where RM is the constraint matrix for the selected modal space(s) and dM is the resulting 

deformations within that space. Note, the subscript M refers to the modal space (G, D, L, 

ST/O or any combination thereof). RM is obtained through exploiting the mechanical 

criteria of G, D, L, and ST/O.   
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There are two primary capabilities of cFSM: (1) modal decomposition: stability 

solutions can be forced into selected deformation modes, e.g. focusing only on 

distortional buckling; and (2) modal identification: general stability solutions from FSM 

can be classified into several fundamental modal bases, e.g. identifying the contribution 

of local and distortional buckling for a selected FSM solution. 

1.2.3 Generalized Beam Theory 

Generalized Beam Theory (GBT) is an extension of classical beam theory that 

enriches the displacement degrees of freedom enabling cross-section distortion and local 

plate bending. The development of the theory has been pioneered by Professor R. Schardt 

and his colleagues at the University of Darmstadt in Germany, then greatly extended to 

linear elastic [29] and second-order analysis including cross-section distortion to 

application of buckling problems and general second-order problems [30] by Davies, et.al. 

Later, Silvestre and Camotim extended GBT to arbitrary orthotropic materials [31, 32] 

and formalized  the method [33] to a wide number of applications [34-37].  The method 

has been implemented in a user-friendly code GBTUL [35]. 

The application of GBT stems from its cross sectional analysis as given in [31, 32] 

and this leads to the definition of several cross section deformation modes: axial 

extension, major/minor axis bending, torsional, distortional, and local-plate modes. With 

the cross-section deformation modes in place, the modal selection for the next-step 

member analysis is possible similar to the selection of modal space, M (Eq. 1-1). Then, 

the solution of the buckling problem involves solving a coupled system of eigenvalues 

based on the GBT equilibrium equations. This can be performed in two methods: 1) an 

analytical method that, similar to FSM, uses trigonometric function to represent the 
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longitudinal field; or 2) an FEM-based method that discretizes the member into elements 

along the length. Currently, application of the analytical method is limited to simply-

supported boundary conditions. After solving the eigenvalue problem, the critical loads 

and buckling modes can be investigated. Modal participation of included cross-section 

deformation modes can be identified as well. 

It is worth noting here that although GBT and cFSM begin from different 

backgrounds, the two methods use similar mechanical definitions for the three basic 

buckling mode classes (cross-section deformation modes), i.e. local, distortional, and 

global, and thus lead to very similar solutions [38]. 

1.2.4 Finite Element Method 

With the advances in computational resources, shell finite element analysis has been 

increasingly used in the stability analysis of thin-walled structures. The ability to handle 

arbitrary boundary conditions, explicitly consider moment gradient, appropriately take 

account of shear effects, and handle members with varying cross sections along the 

length (like holes) make the use of FEM exclusively attractive.  

Usually, there are two steps to performing an elastic buckling analysis with the 

geometry, material property, boundary conditions, and reference loading defined in the 

FEM model. First, a linear perturbation static analysis is solved to find the stress 

distribution in the model based on the reference loading. Second, with the stress 

distribution the geometric stiffness matrix can be formulated and the stability equilibrium 

equation can be obtained as: 

                
     0

,
 

 refg
KK  (1-2)
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where, [K] is the elastic stiffness matrix, and [Kg]σ,ref is the geometric stiffness matrix at 

the reference loading state. Eigenvalue λ is the critical buckling load and eigenvector ϕ is 

the associated buckling mode.  

FEM is not often used by designer because of the overhead in initiating the model 

and the fact that it cannot uniquely identify the buckling modes. These drawbacks are the 

primary reason for the popularity of FSM in this field. 

1.3 Design methods 

In current cold-formed steel design specifications, e.g., in North America, two basic 

design methods for cold-formed steel members are available: the Effective Width Method 

and the Direct Strength Method (DSM). The Effective Width Method performs a 

reduction of the plates that comprise a cross-section based on the stability of the 

individual plates, while DSM performs a similar reduction, but based on the full cross-

section stability; in either local, distortional, and/or global buckling modes. In essence the 

essential difference is the replacement of plate stability with member stability that 

includes plate buckling. 

1.3.1 Effective Width Method 

Normally, for a “stiffened plate”, i.e., one which is restrained along both the loaded 

and unloaded sides does not collapse when the buckling stress is reached. Instead, 

additional load can still be carried by the plate after buckling by means of transverse 

stresses. This phenomenon is termed “postbuckling reserve”. 

For the “stiffened plate”, the stress distribution in the longitudinal direction is not 

uniform due to the reduced rigidity in the center of the plate as it buckling (deforms) out-
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of-plane. The maximum stress will increase over the buckling stress up to the yield stress 

at the supported sides, then the plate fails. The load can be assumed to be carried by a 

fictitious width, which is subjected to a uniformly distributed stress fmax, which is the 

edge stress, and assumed equals to the yield stress at maximum capacity. This is the 

effective width concept, first introduced by von Karman et al. [39] and later modified by 

Winter [40]. This has become the key to the design of cold-formed steel members from 

the first AISI specification in 1946 to the latest 2007 NAS specification. 

For complex cross sections, the effective width should be determined for each 

compression portion and the strength of the section can be calculated based on the 

effective cross section. 

However, from a theoretical point of view, this is a largely simplified method. First, 

it focuses on the membrane and neglects the bending. Second, it does not take into 

consideration of the variation along the length associated with the buckling shape and 

also the variation in the thickness. Third, due to the imperfection, the stress distribution is 

not uniform even before the buckling occurs.  

1.3.2 Direct strength method 

Although the Effective Width Method has been adopted in many specifications 

worldwide and proven to be reliable, there are two major drawbacks that make it highly 

undesirable. One, the Effective Width Method treats the elements of the whole cross 

section independently, so the interaction between elements has been totally ignored. Two, 

when the section becomes more complex or optimized with additional edge and/or 

immediate stiffeners, the computation of the Effective Width Method becomes unduly 

complicated and time-consuming. 
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Therefore, a new design method – Direct Strength Method (DSM) has been 

proposed by Schafer and Peköz [41, 42] to overcome these problems and adopted in 

specification [4]. The new method avoids the calculation of effective width and uses 

strength curves instead. The elastic buckling loads are obtained based on the entire 

member, for instance from FSM solutions, instead of individual elements/plates. DSM is 

based on the same empirical assumption as the effective width method, that the nominal 

strength is a function of elastic buckling load and yield stress of the material. The 

equations of DSM were calibrated against a large amount of experimental data (similar to 

the Effective Width Method, in fact many of the same experiments were employed). 

Specifically, according to DSM, if all the elastic instabilities for the gross section, i.e. 

local, distortional, and global buckling loads (or moments), have been determined and 

also the squash load (or yield moment) that causes the cross-section to yield, then the 

strength can be directly determined by predicting the load (or moment) capacities 

separately for Global (G), Local (L), and Distortional (D) buckling. The relevant DSM 

formulae in the specification [8] are recalled here in condensed form. 

The nominal axial strength, Pn, is the minimum of the individual predicted capacities: 

 
),,min( ndnnen PPPP 
 

(1-3) 

where, the nominal axial strengths, Pne for global buckling (flexural, torsional, or 

torsional-flexural buckling), Pn for local buckling, and Pnd for distortional buckling are: 
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(1-6) 

where, creyC PP / ,  crne PP / , crdyd PP / , ygy FAP  ,  Pcre, minimum of the 

critical elastic column buckling load in flexural, torsional, or torsional-flexural buckling, 

Pcr, critical elastic local column buckling load, Pcrd, critical elastic distortional column 

buckling load, Ag, the gross area of the cross-section, and Fy, the yield stress. 

The nominal bending strength, Mn, is the minimum of the individual capacities: 

 ),,min( ndnnen MMMM 
 

(1-7) 

where, the nominal bending strengths, Mne for global buckling (lateral-torsional buckling), 

Mn for local buckling, and Mnd for distortional buckling are: 
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(1-9) 
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(1-10) 

where,  crne MM / , crdyd MM / , yfy FSM  , Mcre, critical elastic lateral-

torsional buckling moment, Mcr, critical elastic local buckling moment, Mcrd, critical 

elastic distortional buckling moment, and Sf, the gross section modulus referenced to the 

extreme fiber in the first yield. 
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Essentially, the use of column curves for global buckling is extended to local and 

distortional buckling instabilities with appropriate consideration of post-buckling reserve 

and interaction in these modes [42]. In particular, interaction between local and global 

buckling is included explicitly as shown in Eqs. (1-6) and (1-10). 

1.4  Motivation 

Design of cold-formed steel members requires careful examination of the elastic 

buckling loads for all the three buckling modes, global, local and distortional, that are 

commonly categorized. Current design specification, e.g. the Direct Strength Method [42, 

43], aim to predict the ultimate strength in response to each mode as well as take into 

consideration the interaction of the modes.  Therefore, finding the elastic buckling of a 

member under any loading and boundary condition, as input parameters for the Direct 

Strength Method, is a key step towards the final prediction of the ultimate strength. 

To assess the stability of thin-walled members requires advanced tools to overcome 

the limitations in current numerical tools such as FSM and FEM. In particular, commonly 

available FSM solutions are only applicable to simply supported ends, while FEM 

analysis using plate or shell elements is limited by the subjective and laborious nature 

required in identifying the characteristic local, distortional, and global buckling modes.  

Moreover, the development of the design equations for member design, in particular 

DSM, is based on the appropriate identification of the failure modes, e.g., as shown in 

Figure 1-5. Determination of the failure modes is complicated by potential failure 

mechanisms of material yielding, local buckling, distortional buckling, global buckling, 

and combinations thereof. To date, failure mode identification is investigated based on 



15 

 

subjective, and largely visual, engineering observations. Even for numerical simulations 

by nonlinear FEM analysis, since FEM itself provides no means of modal identification, 

failure modes are also judged by visual characterization. It is important to recognize that 

the underlying mechanisms of the member‟s failure are necessary for future specification 

development. Extensive nonlinear analysis incorporating geometric and material 

imperfections will be needed. A quantification method, similar to the strength prediction 

in the specification, is highly desirable to simplify the complicated behavior down to the 

fundamental buckling classes. 

  

(a) Channel with sheathing (b) Zed with sheathing 

Figure 1-5 Failure modes in the test (Courtesy of Yu and Schafer [44])  

The first step of this study is to develop a new FSM to account for general end 

boundary conditions: pin-pin, fixed-fixed, fixed-pin, fixed-free, and fixed-guided and use 

these solutions to extend the cFSM. The trigonometric longitudinal shape functions in 

[12] have been chosen over the spline shape functions for two reasons. First, the well-

known signature curve is based on the trigonometric shape function (for simply-

supported boundary conditions). Second, half-wavelength information of the buckling 

mode may still be easily evaluated with the trigonometric longitudinal shape functions. 
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The full derivation for a FSM stability solution that applies to general end boundary 

conditions is provided. The elastic and geometric stiffness matrices are provided in a 

general form with only specific integrals remaining boundary condition dependent. The 

new FSM has been implemented in a custom version of the finite strip program CUFSM 

as part of this thesis. Verification problems are provided against eigenbuckling shell 

finite element analysis solutions implemented in ABAQUS. Detailed theoretical 

background of modelling the springs in the new FSM solution is also provided. Particular 

attention has been paid to the number of longitudinal terms required in the analysis.  

In addition, the developed solution provides a means to extend the constrained FSM, 

or cFSM, to the case of general end boundary conditions. The existing cFSM solutions 

for pin-pin boundary conditions are recast into the new generalized notation; specifically 

the constraint matrices for the Global, Distortional, Local, and Other (G, D, L, ST/O) 

deformation spaces are written in the generalized notation. Orthogonalization and 

normalization are discussed in detail.  Recommendations are provided regarding the 

choice of basis and normalization. Full implementation of cFSM is enabled in a custom 

version of CUFSM (CUFSM v4).  

To address the limits in modal identification in shell FEM solutions for linear elastic 

buckling analysis, an automatic mode identification method has been proposed which 

uses a special system of modal base functions, referred to as cFSM base functions. The 

modal identification method is enabled by creating a series of base functions within the 

fundamental buckling deformation classes that can then be compared to the general finite 

element displacements. The base functions are constructed using the constrained finite 

strip method (cFSM) for general end boundary conditions. A fairly sizeable minimization 
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problem is required for assigning the contributions to the fundamental buckling 

deformation classes. Modal identification results of FEM solutions are validated, and the 

applicability to arbitrary boundary conditions and members with perforations explored.  

Moreover, the modal identification is extended to collapse analysis of thin-walled 

members modelled using material and geometric nonlinear shell finite element analysis. 

The method is able to (a) quantitatively associate failures with particular classes, e.g. 

state a model is a local failure, and (b) track the evolution of the classes, e.g., mixed local 

and distortional buckling leads to a distortional failure in a given model.  

A conjugate goal of this study is to provide tools for elastic buckling analysis to aid 

the design procedure. For this purpose, application of the FSM and modal identification 

with the Direct Strength Method are discussed. As an ultimate goal of this work it is 

proposed to study collapse mechanisms more systematically by utilizing the modal 

identification capability and ultimately aid the development of future design 

specifications. 

It is worth noting here that theory developed in this research is applicable to all the 

thin-walled members, but the focus of all applications herein is cold-formed steel. 

1.5 Outline of thesis 

This dissertation consists of a total of 7 chapters including two appendices. 

Chapter 1 contains the background and motivation of this research. A brief summary 

of the current design methods are provided. Numerical methods for analyzing the elastic 

buckling and collapse analysis and their limitations are introduced. 
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Chapter 2 presents the full derivation of the new finite strip method for general end 

boundary conditions by utilizing the trigonometric longitudinal shape functions available 

in the literature. The elastic and geometric stiffness matrices are provided in a general 

form with only specific integrals remaining boundary condition dependent. Validation 

against plate and members are illustrated by comparing the solution against FEM 

solutions obtained through ABAQUS with shell finite elements. Other considerations 

such as springs, longitudinal terms, and the possibility of an element-wise finite strip 

method are discussed. 

Based on the work of Chapter 2, the existing constrained Finite Strip method (cFSM) 

for pin-pin boundary conditions is extended into the new generalized notation for general 

end boundary conditions in Chapter 3. Orthogonalization and normalization that forms 

the different bases are discussed in detail.  Recommendations are provided regarding the 

choice of basis and normalization.  

In Chapter 4, an automatic mode identification method for shell FEM elastic 

buckling analysis is proposed. Construction of the base functions from cFSM is 

discussed. Modal identification results of FEM solutions are validated and the 

applicability of any arbitrary boundary conditions and members with perforations are 

explored.  

Following the same idea in Chapter 4, the modal identification method is extended to 

nonlinear FEM collapse analysis in Chapter 5. Applicability of modal identification to 

collapse analysis with geometric and material nonlinearities is illustrated through 

numerical studies. 



19 

 

Chapter 6 shows the application of the finite strip method and modal identification 

with the Direct Strength Method of design, specifically addressing how to utilize 

participation result of the modal identification solution.  

Chapter 7 provides a summary of this research and lists recommendations for future 

research on numerical analysis and design of cold-formed steel structures. 

Appendix A includes the remaining integrals that depend on the longitudinal shape 

functions in FSM. 

Appendix B provides the flowchart and interfaces for the developed code CUFSM 

v4. 
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Chapter 2 Conventional finite strip method for general end boundary 

conditions 

 

 

2.1  Introduction 

The semi-analytical finite strip method (FSM) provides the most widely used 

approach for identifying the characteristic stability modes of a thin-walled member. In 

particular, the “signature curve” of the stability of a member in terms of buckling half-

wavelength vs. buckling load provides an efficient solution. A limitation of commonly 

available FSM solutions, such as the open source program CUFSM [25], is that they are 

only applicable to simply supported ends. 

This chapter provides the derivation and validation studies for the extension of 

CUFSM to general boundary conditions, namely: clamped-clamped (C-C), simple-

clamped (S-C), clamped-free (C-F), clamped-guided (C-G), and simple-simple (S-S). 

Specially selected longitudinal shape functions are employed to represent the various 

general end boundary conditions. The resulting elastic and geometric stiffness matrices 

are presented in closed-form with only specific presolved integrals remaining boundary 

condition dependent. Verification problems are provided against eigenbuckling shell 

finite element analysis solutions implemented in ABAQUS [45]. 

Particular attention is paid to the number of longitudinal terms required to provide 

converged solutions in the analysis of typical thin-walled members with the full suite of 
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boundary conditions, and loading.  Supplemental restraint/bracing is common in thin-

walled members and typically modelled in FSM as an additional spring foundation. The 

implementation of a spring model in FSM with general boundary conditions is 

demonstrated and verified with analytical solution. Comparison of spring modelling 

between FSM and shell finite element method (FEM) is provided to highlight the 

difference between the two methods in linear perturbation analysis. Moreover, an FSM 

approach where the boundary conditions are specified strip-by-strip is explored and 

shown to be inappropriate. 

2.2  Finite strip method 

2.2.1 Degree of freedoms and shape functions 

A typical strip for a thin-walled member is depicted in Figure 2-1, along with the 

degrees of freedom (u1, v1, w1, θ1, etc.) applied end tractions (T1, T2) and the 

global/member (X, Y, Z) and local/strip (x, y, z) coordinate systems.  
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Figure 2-1 Coordinates, Degree of Freedom, and loads of a typical strip [46] 

The u, v and w displacement fields are approximated with shape functions, N, and 

nodal displacements d as: 
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and μ[m]=mπ. Note, the use of the bracketed m, i.e., [m] is to help distinguish the role of 

the longitudinal terms in later derivations, particularly the cFSM derivations that follow. 

The shape function of the strip in the transverse direction is the same as a classical beam 

finite element, while in the longitudinal direction, Y[m], is employed and trigonometric 

functions [12] are utilized, namely: 

S-S:  simple-simple   aymY m /sin][           (2-4) 

C-C:  clamped-clamped    ayaymY m /sin/sin][          (2-5) 

S-C:  simple-clamped      aymmmaymY
m

/sin/)1(/)1(sin
][

        (2-6) 

C-F:  clamped-free   aymY m /)2/1(cos1][          (2-7) 

C-G:  clamped-guided    ayaymY m /2/sin/)2/1(sin][        (2-8) 

2.2.2 Elastic stiffness matrix 

The strain in the strip consists of two portions: membrane and bending. The 

membrane strains, εM, are at the mid-plane of the strip and are governed by plane stress 
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assumptions. The bending strains, εB, follow Kirchoff thin plate theory and are zero at the 

mid-plane, and a function of w alone [11, 25]: 

 BM    (2-9) 
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Based on the generalized “strain”-displacement relation [47, 48], the internal strain 

energy for a strip of constant thickness t is: 
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where the stress is connected to the strain by an orthotropic plane stress constitutive 

relation: σ=Dε. Note, D=D
T
 and also, TT

mw

T

muvm ddd ][ ][][][   (See [48]). Matrix ][mn

ek  is 

the elastic stiffness matrix corresponding to half-wave numbers m and n which can be 

separated for membrane (M) and bending (B), 
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Substitution and integration yield the following closed-form expressions for the 

membrane, ][mn

eMk , and the bending, ][mn

eBk , elastic stiffness matrices:  
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See Appendix A for the explicit integration results of I1 to I5. The preceding has been 

derived independent of [12] and [11] and terms corrected, including the (2, 1) term in keB 

[11]. The full elastic stiffness matrix ke can be expressed as: 

  
qq

mn

ee kk


 ][  (2-17) 

where each ke
[mn]

 submatrix is 8x8 and q
2
 such submatrices exist. 

For the simple-simple (S-S) boundary conditions I1 through I5 are zero when m≠n 

leaving only a diagonal set of submatrices in k. It is this efficiency for the S-S boundary 

condition that leads to the attractive nature of that solution and the universality of the 

buckling load vs. buckling half-wavelength curve for S-S boundary conditions.  

For all other boundary conditions k has non-zero submatrices off the main diagonal 

and interaction of buckling modes of different half-wavelengths occur and the half-

wavelength vs. buckling load curve loses its special significance. In essence, for all 

boundary conditions other than S-S, FSM has the same identification problems as FE 

analysis, unless other tools such as the constrained FSM are implemented. 

2.2.3 Geometric stiffness matrix 

For axially applied edge tractions T1, T2 (see Figure 2-1) a basis for the geometric 

stiffness is the additional work (VP) created as the plate shortens due, e.g., to out-of-plane 

bending, specifically, per [12, 25]: 
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The derivatives of the displacements can be written in terms of appropriate 

derivatives of the shape functions. For example, the partial derivative of w can be 

expressed as: 
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Similar derivations are employed for the membrane deformations u and v of the 

strip.  
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The potential energy Vp can then be written as  
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Similar to the elastic stiffness matrix, the geometric stiffness matrix ][mn

gk  

corresponding to half-wave numbers m and n is broken into membrane, ][mn

gMk  and 

bending, ][mn

gBk : 
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The explicit expressions can be obtained via substitution and integration: 
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where  mm  ;  nn  ; 
a

nm dyYYI
0

''

][

''

][4 ; 
a

nm dyYYI
0

'

][

'

][5   

See appendix A for the explicit integration results of I4 and I5. Several terms in kgM 

and kgB in [12] have been corrected by independent derivation by the authors. Finally, the 

geometric stiffness can be expressed in its full form as: 

  
qq

mn

gg kk


 ][  (2-26) 

2.2.4 Assembly 

Assembly of the local stiffness matrices (ke and kg) into the global stiffness matrices 

(Ke and Kg) proceeds in a manner similar to conventional finite element analysis or the 

classical finite strip method [25]. First, the coordinates must be transformed from local to 

global based on the strip orientation (angle ). For strip j at strip line (node) i and for the 

m
th

 term in the longitudinal series, this transformation follows from the coordinate 

systems established in Figure 2-1 as: 
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These may be collected into a matrix form for all DOF (note, total DOF = 4 DOF   

2 nodes   q longitudinal terms) in strip j as  

      jjj Dd   (2-28) 

where,  j  is defined as following based on Eq. (2-27): 
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Thus, strip j‟s global stiffness matrices are formed from the transformation matrix 

as: 

        jj

e

Tjj

e kK   and        jj

g

Tjj

g kK   (2-31) 

With all DOF in global coordinates the global stiffness matrices may be assembled 

as an appropriate summation of the strip stiffness matrices: 

 
 

j

j

ee KK   and 
 

j

j

gg KK   (2-32) 

where the assembly occurs over nstrips. Note, Ke is a square matrix of dimension 4 DOF    

2 nodes/strip   q terms   nstrips. 

2.2.5 Stability solution 

For a given distribution of edge tractions on a member the geometric stiffness matrix 

scales linearly, resulting in the elastic buckling problem: 
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  ge KK  (2-33) 

where,   is a diagonal matrix containing the eigenvalues (buckling loads) and   is a 

fully populated matrix corresponding to the eigenmodes (buckling modes) in its columns. 

For simply supported boundary conditions, due to the resulting orthogonality in Ke 

and Kg the solutions for any m are independent – and further the buckling load for any m 

may be found by performing the solution for m=1 at a length equal to a/m. As a result, it 

has become conventional to express FSM solutions in terms of the first buckling load 

over a series of lengths (a) as opposed to FEM solutions where typically a model is 

solved for many buckling loads at a single length. 

For FSM with non simply-supported boundary conditions the orthogonality is lost, 

and thus the special meaning of an m=1 solution with varying length a is lost as well. 

Nonetheless, in the material that follows the classical FSM presentation is employed; 

however, given that many longitudinal (m) terms are used the solution should be 

interpreted as a function of physical length, as opposed to half-wavelength. In fact, it 

would be equally valid to use the FEM approach and examine higher mode solutions at a 

given length, instead of varying a. 

2.3  Validation studies for finite strip solution 

To provide validation studies for the selected FSM displacement fields, namely the 

Y[m] of Eq.‟s (2-4) - (2-8) comparisons are made to classical plate buckling solutions and 

shell finite element models of plates and full members. 

2.3.1 Plate studies: comparison to classical solution 

The local buckling stress (cr) of a plate may be characterized as 
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where k is the plate buckling coefficient and is dependent on loading and boundary 

conditions, E and v are material properties, t is the plate thickness, and b the plate width. 

For a 63.5 mm wide, 1.27 mm thick plate, and with the material linear elastic, isotropic, 

with E=203,000 MPa and =0.3, the plate buckling coefficient is determined for all five 

considered end boundary conditions: simple-simple (S-S), clamped-clamped (C-C), 

simple-clamped (S-C), clamped-guided (C-G), and clamped-free (C-F) and for two 

longitudinal edge boundary conditions: simple-simple (s-s) and clamped-clamped (c-c) 

and reported and compared to classical solutions in Figure 2-2. 

The results are in excellent agreement with theory and show the important length 

dependent behaviour in the stability solution which is introduced by the use of non-

simply-supported boundary conditions. 
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Figure 2-2 Buckling coefficients of plates in compression with varying end conditions 

2.3.2 Plate studies: comparison to finite element solution 

To study the accuracy of the solutions for shorter plates, where the end boundary 

conditions have the greatest influence, shell finite element models are developed in 

ABAQUS [45]. The models employ the S9R5 thin shell finite element, and the Lanczos 

method is employed for eigenvalue extraction. The material is assumed to be linear 

elastic, isotropic, with E=203,000 MPa and v =0.3. 

Stability results for FSM and FEM are provided for a uniformly compressed plate 

with clamped-clamped (C-C) boundary conditions at the loaded ends and simple supports 

(s-s) along the longitudinal plate edges (Figure 2-3) and C-C at the loaded ends and 

clamped-clamped (c-c) supports along the longitudinal plate edges (Figure 2-5). The 

FSM solutions are nearly coincident with the FEM solutions, both in terms of plate 

buckling coefficient (i.e., buckling stress) and buckled shape, see Figure 2-4 and Figure 

2-6. The errors (differences) are relatively uniform over the lengths studied: the FEM 
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method is 0.5% lower for the C-C, s-s condition and 0.67% lower for the C-C, c-c 

condition. 

Stability solutions for uniformly compressed plates as a function of plate length were 

completed in FSM and FEM for all 5 of the considered end boundary conditions, and for 

both simple supports on the unloaded edges and clamped boundary conditions on the 

unloaded edges, as summarized in Figure 2-7 and Figure 2-8. The figures demonstrate 

that the assumed longitudinal displacement functions (Y[m]) provide accurate solutions for 

plates. 
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Figure 2-3 Buckling coefficients FEM and FSM results, C-C, s-s 
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(a) Mode shape of FEM result at L/b=5 (b) Mode shape of FSM result at L/b=5 

Figure 2-4 Buckling mode shapes of FEM and FSM at L/b=5, C-C, s-s 
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Figure 2-5 Buckling coefficients FEM and FSM results, C-C, c-c 
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(a) Mode shape of FEM result at L/b=5 (b) Mode shape of FSM result at L/b=5 

Figure 2-6 Buckling mode shapes of FEM and FSM at L/b=5, C-C, c-c 
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(a) simply supported on unloaded edges, S-S 
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(b) simply supported on unloaded edges, S-C 

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

L/b

K

 

 

C-G, ss, FSM

C-G, ss, FEM

k=4.0

 

(c) simply supported on unloaded edges, C-G 



36 

 

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

L/b

K

 

 

C-F, s-s, FSM

C-F, s-s, FEM

k=2.32

 

(d) simply supported on unloaded edges, C-F 

Figure 2-7 simply supported on unloaded edges (s-s), various boundary conditions on 

loaded edges 
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(b) clamped on unloaded edges, S-C 
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(d) clamped on unloaded edges, C-F 

Figure 2-8 clamped on unloaded edges (c-c), various boundary conditions on loaded 

edges 

2.3.3 Member studies 

The previous studies demonstrate that the Y[m] of Eq.‟s (2-4) – (2-8) provide 

excellent approximation of isolated plates. In this section the validation studies are 

extended to a common thin-walled member: a lipped channel. Specifically, an SSMA 

350S162-43 stud [49] with out-to-out web depth of 89 mm, out-to-out flange width of 

41.3 mm, out-to-out lip length of 12.7 mm, and a design thickness of 1.146 mm. The 

material is assumed to be linear elastic, isotropic, with E=203,000 MPa and =0.3. In 

both FSM and FEM the member is modelled as a straight-line model (no corners). Three 

loading cases are considered: axial compression, major-axis bending, and minor-axis 

bending with flange lips in compression. Clamped-clamped end boundary conditions are 

employed. 
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The stability solution under axial compression, as a function of member length, for 

both the FSM and FEM models are provided in Figure 2-9(a). The FSM solution (with 36 

m terms employed) is an excellent approximation of the FEM solution; however at short 

lengths and at the transition point between local and global buckling (L=2725 mm) the 

FSM solution is modestly stiffer than the FEM solution. Figure 2-9(b) provides the error 

between the FSM and FEM solutions. Increasing the number of longitudinal terms (from 

36 to 48 m terms at L=2725 mm) in the FSM solution is demonstrated to decrease the 

error between the two solutions. 

Note, in this solution the distortional buckling mode is at a higher critical stress than 

the local mode, so the first (elastic) buckling mode is always local buckling even at 

intermediate lengths – see Figure 2-10. Also, note in Figure 2-10 that the magnitude of 

the buckling wave varies along the length, which does not happen with simply supported 

ends. To determine the distortional buckling mode using conventional FSM higher 

buckling modes would need to be examined, this further supports the need for modal 

decomposition, only possible with constrained FSM solutions. 
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Figure 2-9 Stability under compression for a 350S162-43 with clamped ends 
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(a) FEM, L=750 mm               (b) FSM, L=750 mm 

Figure 2-10 Mode shapes for a 350S162-43 in compression with clamped ends 

The stability results for FSM and FEM in major-axis bending are provided in Figure 

2-11 and Figure 2-12. Differences between the FSM and FEM solution are essentially 

negligible in Figure 2-11(b) although at very short lengths (members with shorter length 

than the depth of the section) the FSM solution is on the order of 1 to 2% stiffer. In 

major-axis bending, at intermediate lengths, distortional buckling is lower than local 

buckling and thus appears in the results; further, the FSM and FEM solutions are 

essentially coincident in the predicted mode shape, see Figure 2-12.  

In minor-axis bending (with the flange tips in compression) the stability results 

(Figure 2-13) are again in good agreement as are the predicted mode shapes (Figure 2-14). 

The difference between the FSM and FEM models remains less than 1% for distortional 

and global buckling and approximately 1% for local buckling, see Figure 2-13(b). Overall, 

it may be concluded that the selected shape functions are working with the desired 

accuracy and that the method has been implemented successfully. 
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Figure 2-11 Stability in major-axis bending for a 350S162-43 with clamped ends 
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(a) FEM, L=1067 mm               (b) FSM, L=1067 mm 

Figure 2-12 Mode shapes for a 350S162-43 in major-axis bending with clamped ends 
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Figure 2-13 Stability in minor-axis bending for a 350S162-43 with clamped ends 
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(a) FEM, L=3445 mm                

 

 (b) FSM, L=3445 mm 

Figure 2-14 Mode shapes for a 350S162-43 in minor-axis bending with clamped ends 
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2.4  Signature curve and general finite strip method solution 

The signature curve of the stability solution in terms of buckling half-wavelength vs. 

buckling load, as popularized by Hancock [24], provides an efficient means for 

identifying the characteristic buckling modes. The signature curve and its efficiency 

result from the fact that the specially selected longitudinal shape function, which is the 

sine functions as shown in Eq. (2-4), is orthogonal. However, the longitudinal 

displacement field represented by this shape function is limited to simply-supported (S-S) 

boundary conditions. When the longitudinal shape functions are expanded to 

accommodate more general boundary conditions as given in Eq. (2-5) to (2-8), the loss of 

orthogonality of the longitudinal shape functions for non-simply supported boundary 

conditions makes the stability solutions potentially coupled between longitudinal terms 

(in other words, the mode shape is mixed by different half-wavelengths). Hence, the 

signature curve based on a single longitudinal term, loses its meaning in identifying the 

characteristic buckling modes for such boundary conditions.  

To better understand this orthogonality in the stability solution of S-S boundary 

conditions, the stability solutions including 60 signature curves (for longitudinal term 

from 1 to 60) for a 400S162-68 SSMA stud section under major-axis bending are 

provided in Figure 2-15. In addition, the general solution as a function of physical length 

instead of the half-wavelength (all the longitudinal term m are included in one analysis) is 

also shown in Figure 2-15 to reveal the relationship with the signature curves for S-S 

boundary conditions. From Figure 2-15, signature curves of all the higher m longitudinal 

term are simply horizontal translation of the m=1 signature curve.  The m=1 signature 

curve establishes a lower bound curve for global buckling with long half-wavelengths. 
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While all the signature curves together form two plateaus: the distortional buckling 

plateau (the lower one in Figure 2-15) and local buckling plateau (the upper one in Figure 

2-15). Meanwhile, the general stability solutions of varying lengths take the lower path of 

all the signature curves combined. Now, consider a member of length L= 2743 mm, the 

traditional way to find the essential buckling modes (local, distortional, global) is to 

examine all the higher modes at L = 2743 mm, which have been organized in increasing 

order similar to FEM solution, as shown by the vertical line in Figure 2-15 (a). All the 

higher modes are intersecting with the signature curves at different half-wavelength as 

shown in Figure 2-15 (b). The 1
st
 global buckling mode can be found in the m=1 

signature curve at the physical length, the 1
st
 distortional and local buckling modes can be 

found in the distortional and local plateaus, respectively, at the physical length. All of 

these indirectly confirm the orthogonality of stability solutions of different longitudinal 

terms for simply-simply supported boundary conditions. 

Therefore, FSM solutions for S-S boundary conditions for any m are independent 

due to the resulting orthogonality in Ke and Kg. As a result, it has become conventional to 

express FSM solutions of S-S boundary conditions in terms of the first buckling load over 

a series of lengths (signature curve) as opposed to FEM solutions where typically a model 

is solved for many buckling loads at a single length by examining higher mode solutions. 
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(b) Zoom in where higher modes intersecting with signature curves 

Figure 2-15 Stability solutions of SSMA 400S162-68 under major-axis bending for S-S 

Performing the similar signature curve solution for the same member for non-simply 

supported boundary conditions, for instances, C-C boundary conditions, Figure 2-16 

illustrates the relationship of stability solution of signature curves with those of general 

boundary conditions. For FSM with non simply-supported boundary conditions the 
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orthogonality is lost, and thus the special meaning of the signature curve (an m=1 

solution with varying length a) is lost, as shown in Figure 2-16 (a). Given that many 

longitudinal (m) terms are used the solution should be interpreted as a function of 

physical length, as opposed to half-wavelength. Different from S-S, the higher modes at a 

physical length do not intersect with the signature curves anymore as shown in Figure 

2-16 (b). In fact, the FSM solution captures the potential interaction of longitudinal terms. 

Hence, for all the non-simply supported boundary conditions, it would be equally valid to 

use the FEM approach and examine higher mode solutions at a given length (e.g., at L= 

2743 mm as shown), instead of varying half-wavelength as shown in Figure 2-16.  

Even though the signature curves for non-simply supported boundary conditions are 

not valid to examine the buckling behavior, some insights provided are still useful. As 

shown in Figure 2-16, these signature curves still form two plateaus (though slightly 

descending) that associate with distortional and local buckling, respectively. Comparing 

these plateaus with those in S-S as shown in Figure 2-17, they are almost identical. This 

tells us that for relatively long members, even boundary conditions have little impacts on 

critical loads for local and distortional buckling. 
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(a) Stability solutions of signature curves and general FSM solution 
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(b) Zoom in where higher modes NOT intersecting with signature curves 

Figure 2-16 Stability solutions of SSMA 400S162-68 under major-axis bending for C-C 
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Figure 2-17 Stability solutions of SSMA 400S162-68 under major-axis bending for both 

S-S and C-C combined 

2.5  Longitudinal terms 

A key feature of the FSM method presented here is the necessity to use a 

longitudinal series (Y[m]) to properly capture the buckling mode in a given length when 

end conditions other than simply supported are employed. Specific examination of the 

longitudinal terms which are necessary for capturing the buckling modes provides a great 

deal of information about the importance of this longitudinal series. 

Consider the uniformly loaded plate in Section 2.3.1, the participation of the various 

m terms for three sets of boundary conditions at L/b=5 is provided in Figure 2-18. For 

simply supported boundary conditions the plate buckles into 5 half-waves and only m=5 

participates in the solution (Figure 2-18(a)). This solution demonstrates the orthogonality 

present in the simply supported solution. 
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(b) C-C, s-s 
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Figure 2-18 Participation of longitudinal terms at L/b=5 
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If the member ends are clamped, but the unloaded sides still remain simply 

supported, the buckling mode still appears to be in the form of 5 half-waves (Figure 

2-4(c)) but the half-waves are not of constant magnitude and Figure 2-18(b) reveals that 

m=3 and 7 provide a small participation to the solution in addition to the dominant m=5. 

Finally, if the plate is clamped on all sides the mode shape is dominated by 7 half-waves 

(Figure 2-6(c)), but significant contributions exist for m=3, 5, 9, 11 and even higher odd 

modes. In fact, 42% of the participation occurs from modes other than m=7. The coupling 

that occurs is real and necessary for accurate prediction of the buckling mode, and 

although the mode shape has a dominant visual half-wavelength quantitative examination 

of the participations demonstrate that the behaviour is more complicated than a single 

half-wavelength description. 

As the participation plots of Figure 2-18 indicate, 36 longitudinal (m) terms were 

included in the analysis, but only a few terms are practically relevant at a given length. In 

fact, knowing the simply-supported half-wavelength in local buckling (Lcr) we can 

conclude that the m near L/Lcr (5 in the example of Figure 2-18) are of greatest 

importance. The dimension of the eigenvalue problem that must be solved is directly tied 

to the number of included longitudinal terms (see DOF discussion in Section 2.2.1), thus 

computational efficiency is compromised by using a large number of terms in all 

situations. 

For members, local buckling is not the only mode of interest. If the simply supported 

half-wavelengths are known for local (Lcr), distortional (Lcrd), and global buckling (Lcre) 

these represent the three regimes for m of greatest interest, i.e. m near L/Lcr, L/Lcrd, and 
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L/Lcre. In Section 2.4, we analyzed the relationship of signature curves and general FSM 

solutions. The local and distortional buckling regimes for m of greatest interest are 

immediately illustrated by two plateaus in Figure 2-17, where the longitudinal terms m of 

the plateaus at a physical length are near L/Lcr and L/Lcrd for local and distortional 

buckling, respectively. Different with the concept of effective length in Euler buckling, in 

FSM context the longitudinal term for Euler buckling is always m=1 for all boundary 

cases. Note, this, m=1, global is only rigorously true for bare member. 

To illustrate these three regimes, consider the 350S162-43 of Section 3.3 as a 

clamped-clamped column at L=2725 mm, i.e. the location in Figure 2-9 where FSM (with 

m=36 terms) and FEM had the greatest difference. Classical FSM with simply supported 

boundary conditions is completed and Lcr=68.6 mm. The difference in Figure 2-9 at 

L=2725 mm may be attributed to not providing high enough m terms to cover local 

buckling, namely, L/Lcr ~ 39, but only 36 terms are employed. Figure 2-19(a) indicates 

that m=37, 39, and 41 are the dominant terms. 

Now, consider the 350S162-43 as a beam in major-axis bending at L= 1067 mm, 

where distortional buckling is the controlling mode. Classical FSM with simply 

supported boundary conditions is completed and Lcrd=371 mm and L/Lcrd ~ 3. Figure 

2-19(b) indicates that m=3 is by far the dominant term. For global buckling, for instance 

for the beam bent about the z-z axis, the dominant term is m=1 (Figure 2-19(c)), as 

expected.  
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Figure 2-19 Participation of the longitudinal terms 
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Thus, an approximate method which may be utilized to greatly increase 

computational efficiency is to only include those m terms near: L/Lcr, L/Lcrd, and L/Lcre. 

The proposed approximation numbers that shall be included in the analysis are selected 

as following: 7 longitudinal terms around L/Lcr and L/Lcrd, and 3 longitudinal terms 

around L/Lcre (essentially m=1, 2, and 3). The advantages of this are that: 1) increase of 

the computational efficiency; 2) almost no reduction of the accuracy of the solution; 3) 

the three essential buckling modes are all included in the solution. 

2.6  Spring modeling  

Restraint of a thin-walled member such as in a purlin-sheeting system or wall system 

with bracing and sheathing are common. These kinds of restraints can be modeled as a set 

of springs or spring foundations along the member, the influence of which can be 

considered in the stability behavior of the member.  

2.6.1 Spring stiffness in FSM 

For continuous springs/spring foundations, the stiffness of the springs must be added 

into the FSM analysis. An equivalent stiffness must be determined from the spring 

foundation stiffness and this spring stiffness added to the elastic stiffness matrix Ke in 

Eq.‟s (2-15) and (2-16). 

In finite strip and finite element models, the springs are generally defined at certain 

nodes. Therefore, the transverse shape functions (linear or cubic polynomial function in 

Eq.‟s (2-2) and (2-3)) are unit vectors depending on the direction of the foundation 

springs. Consequently, the strain energy in the spring can be calculated similar to 

equivalent nodal loads as following: 
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    dyFdU
a T

spring 
02

1
 (2-35) 

where, in the spring model, {F} = k {d}, {d} = [U V W Θ]
T
 is the nodal displacement 

vector, k is a matrix consisting of the corresponding spring foundation stiffness with 

specified direction (e.g., in the units of F/L/L for translational spring, and of F·L/rad/L for 

rotational spring) in diagonal, which is diag(KX,KY,KZ,KΘ), and a is the strip length. 

Since the nodal displacement in the strip is a summation over several longitudinal 

terms as shown in Eq. (2-4) and (2-8),  the strain energy in the spring for the strip can be 

rewritten as: 
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For the simply supported boundary case, for instance, I1 is zero when m≠n while it is 

a/2 when m=n. See Appendix A for the explicit integration results of I1 and I5. 

2.6.2 Analytical solution for global buckling 

2.6.2.1 Flexural buckling 

For a simple column with elastic spring foundation, the flexural buckling solution 

can be found in Theory of Elastic Stability by Timoshenko and Gere [50]. Now, let us 

extend the analytical solution of flexural buckling to more general boundary conditions. 
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In the general boundary case, assume the buckling curve in the longitudinal direction is 

represented by the equation: 

 
q

m

mm YAw ][][  (2-37) 

where, similar to the definition in FSM, m is longitudinal term, up to q, and Y[m] is the 

assumed buckling curve in the longitudinal direction that satisfies the boundary 

conditions. For the general boundary conditions studied here, Y[m] is given in Eqs. (2-4) -

(2-8). 

By neglecting the strain energy due to axial stress, the strain energy of bending and 

the spring foundation are expressed by assuming the cross section and spring stiffness are 

constant along the length as  
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At the same time, the work done by the external compression force P can be 

expressed as: 
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Then, the potential energy in the system is: 
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Substituting w into Eq. (2-40), the potential energy can be rewritten as: 
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The principle of minimum potential energy thus leads to the following eigenvalue 

problem in matrix form: 

 AIPAIkIEI ][])[][( 514   (2-42) 

where, A is the vector consisting of [A[1] A[2] A[3]  … A[45]], and  
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For a simply supported column, I1, I4 and I5 are zero when m≠n, which leads to a set 

of diagonal matrices. Therefore, the buckling curve is uncoupled between different m 

longitudinal terms. Substitute I1, I4 and I5  into Eq. (2-42), the critical load can be obtained: 
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which is the same as that in [50] and is known as Euler buckling. 

For other than simply supported boundary conditions, matrices [I1], [I4], and [I5] 

have nonzero off-diagonal terms which means different m longitudinal terms are coupled. 

The eigenvalue problem of Eq. (2-42) must be solved for several longitudinal terms in 

full matrix form to take account of their potential coupling. 

An I-beam section has been selected here to compare the FSM solution and 

analytical solutions. The section has a height of 100mm, width of 60mm, and thickness of 

2mm. The material is assumed to be linear elastic, isotropic, with E=210,000 MPa and v 

=0.3. The spring is in the weak-axis direction with a foundation stiffness of k=0.001 

N/mm/mm.  

For simply supported boundary conditions, both FSM and Euler solutions with and 

without springs are shown in Figure 2-20. Figure 2-20 demonstrates the excellent 

agreement between the two solutions. In fact, when there is no spring, the member 
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selected always buckles in minor-axis bending; while with the spring, both solutions 

show the transition of the buckling mode from m=1 to m=2. However, when the column 

length is long, the FSM solution is able to capture the lower buckling mode – major-axis 

bending. That is where these two solutions (analytical/Euler and FSM) separate. 

For all the other boundary conditions, both FSM and Euler solutions should take into 

account the coupling effect between longitudinal terms. Comparisons are shown in Figure 

2-21 - Figure 2-24 for C-C, S-C, C-F, and C-G, respectively. Similar to the S-S case, 

excellent agreement can be found for all the cases. In addition, for longer columns, the 

FSM solution departs to a lower critical mode (major-axis bending) when the spring is 

present. 
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Figure 2-20 FSM and analytical solutions of the column with/without springs for S-S 
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Figure 2-21 FSM and analytical solutions of the column with/without springs for C-C 
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Figure 2-22 FSM and analytical solutions of the column with/without springs for S-C 
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Figure 2-23 FSM and analytical solutions of the column with/without springs for C-F 
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Figure 2-24 FSM and analytical solutions of the column with/without springs for C-G 
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2.6.2.2 Flexural-torsional buckling 

In the previous study, the analytical solution is restricted to flexural buckling in one 

direction. For general column buckling, flexural buckling in both directions and torsional 

buckling should be considered simultaneously, especially when the cross-section is not 

symmetric. For common singly symmetric section the coupling results in flexural-

torsional buckling. 

For general boundary conditions, assume the buckling curve in the longitudinal 

direction is represented by the equation: 
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m
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mm dYYAu    (2-45) 
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where, similar to the definition in FSM, m is the longitudinal term, up to q, Y[m] is the 

assumed buckling curve in the longitudinal direction that satisfies the boundary 

conditions, and d[m] = [A[m] B[m] C[m]]
T
. For the general boundary conditions studied here, 

Y[m] is given in Eqs. (2-4) - (2-8). 

The modeling of the springs is illustrated in Figure 2-25 with a channel section as an 

example. Displacement u is in x direction, w in z direction and rotation θ in x-z plane. All 

the displacements are with respect to the shear center. 



63 

 

kz

k
kx

hy

hx

hzs

hxs

s c

x

z

xo

zo: distance 

between S

and C in z

 

Figure 2-25 Illustration of cross section and springs 

By neglecting the strain energy due to axial stress, the strain energy by bending and 

the spring foundation are expressed as the following (assuming the cross section and 

spring stiffness are constant along the length): 
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where, Ixx, Izz are the second moment of inertia, Ixz is the product moment of inertia, J is 

Saint-Venant tortsional constant, Cw is the warping constant, kx, kz, kθ are the foundation 

spring stiffness, hx is the distance in x direction of spring kzs relative to shear center, hzs is 

the distance in z direction of spring kx relative to shear center. See Timoshenko and 

Gere‟s book [50] for a similar solution through equilibrium equations. At the same time, 

the work done by the external compression force P can be expressed as: 
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where xo is the distance between shear and shape center in x, zo is the distance between 

shear and shape center in z, ro is the radius of gyration, given by 
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Substituting u, w, and θ into Eq.‟s (2-48) - (2-50), the strain energy and external 

work can be rewritten as: 
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The explicit integration results of I1 and I5 can be found in the appendix A. Then, the 

potential energy in the system is: 

 extspringstrain WUU   (2-53) 

The principle of minimum potential energy thus leads to the following eigenvalue 

problem in matrix form: 
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where, d is a vector  TT

q

TT ddd ][]2[]1[  , 

Solving the above eigen problem yields the critical load for the global buckling 

mode. This solution captures all possible global buckling modes, namely: major-axis 

bending, minor-axis bending, torsional, including coupling of any mode for any of the 

boundary conditions (S-S, C-C, S-C, C-G, and C-F) studied here. 

For a channel section, with and without springs, the stability solutions of long 

members by FSM and the analytical method are provided in the following figures for 

each boundary condition case. The section has a web height of 100mm, flange width of 

60mm, lip length of 10mm and thickness of 2mm. Young‟s modulus of the material is 

210 GPa, and the Poisson ratio is 0.3.  The springs are foundation stiffness in the weak-

axis direction with Kx=0.1 N/mm/mm and in the rotational direction with Kθ=10 

N/rad/mm (see Figure 2-25). 

Either with or without springs, FSM solutions show excellent agreement with the 

developed “analytical” solutions for all the boundary conditions. Also, as an illustration, 

the buckling mode transfers from weak-axis bending to major-axis bending due to the 

springs in Figure 2-26 for S-S boundary conditions. 
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Figure 2-26 FSM and analytical solution of column for S-S with/without springs 
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Figure 2-27 FSM and analytical solution of column for C-C with/without springs 
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Figure 2-28 FSM and analytical solution of column for S-C with/without springs 
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Figure 2-29 FSM and analytical solution of column for C-G with/without springs 
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Figure 2-30 FSM and analytical solution of column for C-F with/without springs 

2.6.3 Comparison with shell FEM 

Elastic buckling analysis (also known as eigenvalue buckling analysis), which is a 

linear perturbation procedure, predicts the theoretical buckling strength of a member 

usually based on the perfect geometry. Imperfections and nonlinearities are not included 

in the analysis. However, eigenvalue buckling analysis is preceded by a static analysis to 

obtain the stress distribution in the member. The geometric stiffness matrix is formulated 

based upon this stress distribution. With the elastic and geometric stiffness matrices, the 

results solved by the eigenvalue buckling analysis give the load factors (eigenvalues) that 

scale the load applied in the static analysis and also the corresponding buckling mode 

shapes (eigenvectors). 



69 

 

The FSM stability solution for general boundary conditions with springs shows 

excellent agreement with the “analytical” Euler solution as presented in the previous 

section. In this section, a more extensive verification has been performed against a shell 

FEM solution. For the same cross section used to verify the flexural-torsional buckling 

with springs (as shown in Figure 2-31), the stability solutions under axial compression, as 

a function of member length, for both the FSM and FEM models are provided in Figure 

2-32 for this member with/without springs. Different from the verification work in 

Section 2.3, the S4 shell element in ABAQUS library is used here. In terms of the critical 

loads as shown in Figure 2-32, the FSM solutions show excellent agreement with FEM 

solutions in both cases. The predicted mode shapes are also the same for both FSM and 

FEM as illustrated in Figure 2-33 (at L=2.42 m). The spring scenario considered in this 

study has almost no impact on local buckling load for short columns. For intermediate 

columns (in the range: 760 ~ 2500 mm), the critical mode (1
st
 eigenmode) is distortional 

buckling without springs, while distortional buckling has been restrained by the springs 

and the critical mode is local buckling – see Figure 2-33. Moreover, the global buckling 

loads have been enhanced by the springs as well.  

Kz=0.01 N/mm/mm

Kθ=10 N/rad/mm

 

Figure 2-31 Continuous springs in the member length 
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Figure 2-32 FSM and FEM solutions of column for C-C with/without springs 

 

(a) FSM  (b) FEM 

Figure 2-33 Buckling mode shapes of FEM and FSM at L=2.42m 

Now, for the same member with springs shown in Figure 2-31, the stability solutions 

of FSM under major-axis bending (top flange in compression) are compared with FEM 

solutions. The critical loads as a function of member length are shown in Figure 2-34. 
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Tremendous differences are observed especially for long members, for which FSM 

predicts either local buckling (in Figure 2-35a) or global buckling while FEM always 

predicts localized local/distortional interacted mode at two ends (in Figure 2-35b). 

However, for FSM (as implemented), the stress distribution is pre-assumed as 

longitudinal nodal stresses at the ends and no gradient is present along the length. 

Therefore, when the springs are considered in the model, while FSM remains the pre-

assumed stress distribution (as shown in Figure 2-36(a)), a static analysis performed in 

FEM may result in a different stress distribution, especially at the ends of the beam (as 

shown in Figure 2-36(b)). While, stress distribution in FSM is uniform along the length, 

gradient of the stress distribution is observed in FEM model. 
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Figure 2-34 FSM and FEM solutions of beam member with springs for C-C 
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(a) FSM buckling mode (b) FEM buckling mode 

Figure 2-35 FSM and FEM buckling mode shapes at L=2.42m 

 

(a) FSM                                                             (b) FEM 

Figure 2-36 Pre-buckling stress distribution in FSM and FEM for spring modeling 

2.7  Element-wise finite strip method 

The general boundary condition conditions in FSM include S-S, S-C, C-C, C-G, and 

C-F represented by the specially selected longitudinal shape functions of Eq.‟s (2-4) – (2-

8). However, the longitudinal shape is applied in a strip-by-strip sense, as illustrated in 

Figure 2-1, the default application in FSM is that the boundary condition at the end is the 

same for all the strips (Figure 2-37(a)), as opposed to the possibility that the member may 
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be restrained differently in parts at the ends. For instance, as shown in Figure 2-37(b), the 

upper part of section is simply supported and the lower part is clamped.  

                           

e. g., S-S

e. g., C-C

 

(a) uniform boundary conditions (b) element-wise boundary conditions 

Figure 2-37 uniform boundary conditions and element-wise boundary conditions at the 

ends 

In the latter case (Figure 2-37(b)), the boundary condition can be specified strip-by-

strip (element-wise) in FSM. The stability solutions of the boundary case in Figure 

2-37(b) are provided as a function of member length in Figure 2-38. In FEM, 

complication arises on how to appropriately handle the warping fixity of C-C boundary 

conditions implied in FSM.  In our models, for convenience, the term “locally fixed” is 

used to represent that the cross section of C-C boundary condition part is assumed to be 

warping free; while the term “globally fixed” represents that the cross section of C-C 

boundary condition part is assumed to be warping fix by direct fixity (or realized through 

rigid body definition). The FEM solutions in Figure 2-38 demonstrate significant 

differences from the FSM solutions. FSM uses longitudinal shape function to represent 

the longitudinal field, thus the discontinuity at the boundary between S-S and C-C still 

preserves in the longitudinal direction. This clearly violates the concept of Saint-Venant‟s 
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principle that the discontinuity should only affect a small region at the end. Consider the 

stress distribution of a plate under compression with mixed boundary conditions at ends, 

where half of the nodes are clamped and the rest are simply supported. The stress 

discontinuity, as shown in Figure 2-39 is only observed at the ends (Though, from a strict 

point of view, the stress contour shown here from FEM (ABAQUS, von Mises stress) is 

the smoothed stresses found by averaging the discontinuous stresses element by element.).  
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Figure 2-38 Stability solution of FSM and FEM for mixed end boundary conditions 
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Figure 2-39 Stress distribution of plates with mixed end boundary conditions 

2.8  Summary 

The application of the semi-analytical finite strip method to general end boundary 

conditions (simple-simple, clamped-clamped, simple-clamped, clamped-guided, and 

clamped-free) is explicitly derived, implemented, and validated. The validation studies 

show excellent agreement between eigenbuckling solutions by FSM and shell FEM with 

general end boundary conditions.  

However, one must take care to insure enough (or the proper) longitudinal terms are 

included in the series to capture all buckling modes of interest. For any end boundary 

condition other than simple supports, multiple longitudinal half-waves participate in the 

solution, even when simple buckling patterns may be visually identified. The relationship 

between signature curves and general FSM solutions reveals the buckling characteristics 

of local, distortional, and global modes. Longitudinal terms of greatest interests included 

in the buckling analysis are then recommended as an approximation to increase the 

computational efficiency.  
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Springs are appropriately accounted in the FSM modeling. Verification studies show 

excellent agreement with an analytical solution for global buckling. However, pre-

buckling stress in FSM is different from that in an FEM model with springs, especially 

for beam members, resulting in different buckling prediction.  Analyst should be aware of 

this difference. 

As demonstrated herein the boundary conditions should not be mixed in the same 

FSM model. 
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Chapter 3 Constrained finite strip method for general end boundary 

conditions 

 

 

3.1  Introduction 

In recent years two new approaches have provided a formal means to identify the 

stability of thin-walled members: Generalized Beam Theory (GBT) and the constrained 

Finite Strip Method (cFSM) see [38] for a full comparison. GBT and cFSM employ a 

series of mechanical assumptions that separate the modes. In the case of GBT the 

implementation is in the form of an enriched beam element transformed from nodal, to 

modal, degrees of freedom. In the case of cFSM the implementation is in the form of 

constraint matrices that separate the degrees of freedom into those consistent with local, 

distortional, and global buckling. Further, while GBT has been implemented for general 

boundary conditions [31, 32] cFSM has not. The attraction of formal identification of the 

buckling modes is not just a theoretical one, as design methods such as the Direct 

Strength Method [4] directly utilize this information to predict ultimate strength. 

The existing cFSM implementation [26-28] is limited in its applicability to simply 

supported end boundary conditions. Given the successful validation of the finite strip 

method for general boundary conditions, namely simply-simply (S-S), clamped-clamped 

(C-C), simply-clamped (S-C), clamped-guided (C-G), and clamped-free (C-F), this 

chapter explores the fundamental derivations required to extend the constrained Finite 
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Strip Method, or cFSM to any boundary condition. First, the focus of the discussion is on 

the derivation of the constraint matrices (RM) appropriate for constraining the general 

deformation fields to global (G), distortional (D), local (L), or other (ST/O) deformations. 

Then, possible transformation of the constraint matrices inside each separated subspace 

(G, D, L, ST/O) is discussed. These different constraint matrices are called different bases. 

For modal identification purposes, different normalization schemes on the basis are 

available and how to categorize the identification coefficients also has impacts on the 

participation result. Hence, recommendations on the choices for basis and normalization 

are discussed for automated strength prediction by establishing agreed upon methods for 

modal decomposition and identification. 

3.2  Buckling mode definition 

The essential feature of cFSM is the separation of general deformations into those 

deformations consistent with Global (G), distortional (D), local (L), and other (ST/O) 

deformation modes. The deformation modes are defined by the mechanical assumptions 

inherent within each mode. These mechanical assumptions are motivated from the 

pioneering work of Generalized Beam Theory [31, 32] and have been successfully 

implemented in FSM for S-S boundary conditions [25-28]. The mode definitions center 

on the following 3 mechanical criteria: 

 

Criterion #1 - Vlasov‟s hypothesis: (a) (γxy)M = 0, i.e. there is no in-plane shear,  

(b) (εx)M = 0, i.e. there is no in-plane transverse strain, and  

(c) v is linear in x direction within a flat part (i.e. between any two fold locations).  
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Criterion #2 - Longitudinal warping: (a) v ≠ 0, i.e. the warping displacement is not 

constantly equal to zero along the whole cross-section, and  (b) the cross-section is in 

transverse equilibrium.  

Criterion #3 - Undistorted section: κxx = 0, i.e. there is no transverse flexure. 

In general, Criterion 1 may be tied to classical beam theory, or, as named - Vlasov‟s 

hypothesis. While warping is allowed, certain membrane deformations are restrained 

through no in-plane shear and transverse strain. In addition, even warping should be 

linearly distributed within a flat plate. Criterion 2 indicates that non-zero warping 

(longitudinal, or v deformation) should exist in the cross section. Since local plate 

deformations have no deformation at the center plane of the plate in longitudinal 

direction (only bending plate deformation), this provides a separation between local plate 

deformations and other deformation modes. Criterion 3 essentially relates to distortion of 

the cross-section. Theoretically, this provides a means to separate global from distortional 

buckling modes, though the separation is realized through a practical understanding about 

global buckling modes (of course, still satisfying this criterion) instead of checking the 

transverse flexure as shown later in deriving the RG constraint matrix. 

The separation of the G, D, L, ST/O deformation modes are completed by 

implementing the above three criteria as detailed in Table 3-1. The modes implied by 

these criteria are in good agreement with current practice for a wide range of practical 

problems. However, cases exist where the applied definition leads to results not in line 

with current engineering practice [51]. 

 

 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V3T-4NVCFYH-1&_mathId=mml79&_user=75682&_cdi=5739&_pii=S0143974X07000582&_rdoc=1&_issn=0143974X&_acct=C000006078&_version=1&_userid=75682&md5=ae75bd2f61616c1d5ce4c4ba91cd4198
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Table 3-1 Mode classification 

 
G  

modes 

D 

modes 

L 

modes 

ST/O 

modes 

Criterion #1--Vlasov's hypothesis YES YES YES NO 

Criterion #2--Longitudinal warping YES YES NO N/A 

Criterion #3--Undistorted section YES NO N/A N/A 

 

3.3  Notations and framework of constrained finite strip method 

The basic notation, coordinate systems, etc. established in Chapter 2 (Figure 2-1) for 

conventional FSM apply here as well. Longitudinal displacements (V) play a special role 

in cFSM, and owing to a shared terminology with Generalized Beam Theory are 

generically termed warping displacements. This may be distinguished from the transverse 

displacements (U,W,Ө) which occur in a given strip. 

An additional classification for the nodes is also introduced: main nodes (at fold-

lines, indicated with a subscript m without brackets) and sub-nodes (within the flats, 

indicated with a subscript s) as illustrated in Figure 3-1. Therefore, the total number of 

nodes (or nodal lines) is n, consisting of nm main nodes and ns sub-nodes (nm +ns = n). 

Also, the total number of plate elements (or strips) is (n-1) and the total number of main 

plate elements (or strips) is (nm-1). For the derivations presented here the sequential node 

and element numbering systems depicted in Figure 3-1 is assumed. Thus, only open 

singly branched cross-sections are considered at this point. 

Once X and Z (global) coordinates of all the n nodes, thickness (t) of all the strips, 

member length (a), and material properties are known, a member can be defined. The 

width and angle (b and α, respectively) of the strips is calculated from the nodal 



81 

 

coordinates. In the following derivations individual nodes are referenced by subscripts, 

e.g., the X coordinate of the first nodal line is: X1, while strips are referenced by 

superscripts in parentheses, e.g., the width of the last strip is: b
(n−1)

, or the width of the 

last main strip is: b
(nm−1)

. 

1 1
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3

i-1

i
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i-1

i

α(i-1)

α(i)

b(i-1) , t(i-1)

b(i) , t(i)
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n external main nodes

internal main nodes

sub-nodes 

1 1
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nm-1
nm
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nm-2

2

x
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i+1

 

Figure 3-1 Node classification and numbering scheme 

The key feature of cFSM, and similar to the work established in [26], is that the 

general displacement field d may be constrained to any modal space (G, D, L, ST/O or 

any combination) via:  

 MM dRd   (3-1) 

where RM is the constraint matrix for the selected modal space(s) and dM is the resulting 

deformations within that space. Note, here subscript M refers to the modal space (G, D, L, 

ST/O or any combination thereof) and not membrane deformations as in the stiffness 

matrix derivations. Also note, in the case of general boundary conditions where the 

longitudinal displacement fields are a series the total DOF: TND=4n×q, instead of 4n 
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where q is the total number of m longitudinal terms included. This is obviously a 

significant expansion over the 4n problem size of [26]. Thus RM which in [26] is 

4n×dimension of the given M space, is now 4n×dimension of the given M space×q. RM is 

the key towards applications of cFSM in terms of modal decomposition and 

identification. 

Modal decomposition is illustrated through constraining the eigenvalue problem of 

Eq. (2-31). Introducing Eq. (3-1) into Eq. (2-31) and pre-multiplying by RM
T
, the 

constrained eigenvalue problem for mode or modes M results: 

 
MMMgMMe

KK 
,,

 (3-2) 

where, Ke,M and Kg,M are the elastic and geometric stiffness matrix of the constrained 

FSM problem, respectively, and defined as Ke,M=RM
T
KeRM and Kg,M=RM

T
KgRM; ΛM is a 

diagonal matrix containing the eigenvalues for the given mode or modes, and ΦM is the 

matrix corresponding eigenmodes (or buckling modes) in its columns. 

Combined defined constraint matrices of each subspace (G, D, L, ST/O) span the 

original FSM DOF space, and provide an alternative basis organized in G, D, L, ST/O. 

Using this basis, any nodal displacement vector, d, (deformed shape or buckling mode) 

may be transformed into the basis spanned by the buckling classes, via 

 dRc 1  (3-3) 

where the coefficients in c represent the contribution to a given column of basis R. The 

participation of each mode class is calculated based on these coefficients. However, the 

participation is not unique and largely depends on the choices of basis, normalization 

scheme of the basis, and also how to calculate the participation for each subspace given 

the contribution coefficients.  
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Systematic explanation and study of these choices influence on both modal 

decomposition and modal identification results has been provided in [52] for S-S stability 

solution represented by signature curve. Additional discussions will be expanded to 

general FSM solutions in this chapter. 

3.4  Derivations of constraint matrix R 

As discussed above, the constraint matrix plays a central role in cFSM. The 

constraint matrix for each buckling class (G, D, L, and ST/O) is constructed by exercising 

the standard FSM space based on the criteria provided in Table 3-1. The same strategy as 

in [28] is followed. The constraint matrix RGD of GD space is defined by enforcing 

criteria #1 and #2, and then separation of GD space into G and D is conducted by 

following criterion #3.  Indeed, defining the constraint matrices RG and RD is the most 

challenging. The constraint matrices for L and ST/O are formed sequentially and 

relatively easier by employing their related criteria. 

3.4.1 Derivation of RGD 

3.4.1.1 Implementation of Criteria #1 – Vlasov’s hypothesis 

When considering Vlasov‟s hypothesis, sub-nodes are disregarded and only main 

nodes are considered, which are assumed to be numbered from 1 to nm. The width of the 

flat plate between main nodes is denoted as b. The displacement fields are defined in 

terms of Eq.‟s (2-1)-(2-8). Conditions (a) and (b) of Vlasov‟s hypothesis implies: 
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Considering x=0 implies: 
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where subscript 1 and 2 refer to the main node numbers, similar expressions may be 

derived for 2,3 etc. Noting that all Y[m] are a function of y alone, and that y is arbitrarily 

chosen in the longitudinal direction, the coefficients of Y[m] must be zero, thus: 

 ][][2][1 mmm uuu   for m=1, 2,…, q  (3-6) 

Considering xy=0 implies: 
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Again Y[m], or Y[m]′ in this case, must be zero for this condition to be met, resulting in: 

          
 m

mmmmm
bk

)vv(uuu
1

2121   for m=1, 2,…, q (3-8) 

where k[m]=[m]/a=m/a. Thus, the derivation is identical to [26] with the exception that 

the notation now incorporates the m half-waves employed. The local displacements are 

transferred to global displacements via Eq. (2-27); note local v is equal to global V (i.e. 

v=V). Utilizing connectivity of the strips all of the global U and W (at the main nodes) 

may be written in terms of the warping displacement V. The procedure is identical to [26] 

and provided explicitly in [48] the result of enforcing (a) and (b) of Vlasov‟s hypothesis 

may be expressed as: 

 ][1

][

][

1
mm

m

mm VS
k

U   and ][1

][

][

1
mm

m

mm VC
k

W   (3-9) 

where Um[m] and Wm[m] are (mn-2) element vectors with the U and W DOF for internal 

main nodes from 2 to (nm-1) corresponding to longitudinal term m, Vm[m] is an nm 
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element vector with the V warping displacements of the main nodes corresponding to 

longitudinal term m, while S1 and C1 are (nm-2) ×nm matrices containing only basic 

cross-section geometry data. Explicit expressions of S1 and C1 are provided in the 

following: 
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The last feature of Vlasov‟s hypothesis is that the warping displacements must be 

linear across the main nodes. The selected shape function implicitly ensures linearity 

across a strip. Thus the sub-node warping displacements (subscript s) are calculated by 

linear interpolation: 

 ][][ mmvms VBV    (3-12) 

where, Vs[m] is a vector of the warping displacements of the sub-nodes corresponding to 

the half-wave number m, and the elements of matrix Bv are solely calculated from the 

strip widths, as in [26]. Note, Vlasov‟s hypothesis does provide certain restriction on the 

external main nodes, but these are handled subsequently in the derivation. 



86 

 

3.4.1.2 Implementation of Criteria #2 – longitudinal warping 

The second formal mechanical criterion states: (a) warping must be non-zero, and 

(b) any transverse displacements must be in equilibrium within a cross-section [28, 48]. 

Given Vlasov‟s hypothesis as embodied in Eq. (3-9), if warping displacements, V, are 

non-zero then non-zero transverse displacements, U and W, at the main nodes will result. 

To achieve (b) which requires equilibrium in the transverse cross-section, the Um and Wm 

at the main nodes are applied as kinematic displacements to an equivalent multi-span 

beam model of the cross-section, as depicted in Figure 3-2. This must be completed for 

each m term, i.e. for q cross-sections. 

1 1

2

3

i-1

i

2

i-1

i

n-2

n-1

n-1

n

x

y

i+1

external main nodes

internal main nodes

sub-nodes 

EI(1)

EI(2)

EI(i-1)

EI(i)

EI(n-2)

EI(n-1)

W2

U2

W3

U3

Wnm-1

Unm-1

(a) (b) (c)  

(a) cross section (b) equivalent multi-span beam (c) displacements at main nodes 

Figure 3-2 Cross-section model for enforcement of Criterion #2 

In previous work, i.e. [26, 28], the kinematic displacements at the main nodes Um 

and Wm were solved for only a single longitudinal term, i.e. for only one cross-section. 

However, for general boundary conditions as implied in Eq.‟s (2-1)-(2-8): 
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Now, q cross-sections must be solved with equilibrium enforced, where Um[m] or Wm[m] 

denotes the main node movements of the [m]
th

 longitudinal term, i.e., the prescribed 

displacements. 

The bending rigidity of the equivalent beam is identical with the transverse plate 

rigidity of the member. The axial rigidity is assumed to be very large and the deformation 

of the elongation or shortening is negligible. Thus, only moments are considered in 

keeping the cross-section equilibrium. Thus, terms related to axial rigidity (E1t/b) in Eq. 

(3-14) should be replaced by infinite. No external load is applying, but only the kinematic 

loading expressed by the movement of the supports. The support movements are exactly 

the global transverse U, W displacements of the internal main nodes. This equivalent 

beam is a statically indeterminate system. This problem may be solved using the stiffness 

method. As a practical matter, the existing FSM elastic stiffness matrices Eq. (2-17) 

and/or (2-30) may be simplified and used in the solution, see [11] for the explicit details 

of the simplification. The strip stiffness matrix is simplified to: 
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where dyYYI n

a

m ][

0

][1  , see Eq. (16) for other terms. 

The local strip is transformed to global coordinates and assembly performed. Thus, 

equilibrium of the cross-section in the transverse direction is embodied in the matrix 

stiffness expression: 

 ttte qdK ,   (3-15) 

where Ke,t is the global stiffness matrix, dt is the displacement vector of the displacements 

(U, W, Θ) of the equivalent beam, and qt is the vector of the nodal forces for the same 

DOFs. The kinematic displacements at the main nodes Um and Wm are shown in Eq. (3-

13) for general boundary conditions. Therefore, dt should also take the form similar to 

Eq. (3-13) which is a summation over longitudinal terms: 

   ][

1
][ m

q

m
mtt Ydd 



   (3-16) 

Eq. (3-15) is expanded into known, k, and unknown, u, displacements and forces. 
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  (3-17) 

where the known displacements dt,k are at the main nodes: Um and Wm, and the unknown 

displacements dt,u are the remaining Us, Ws at the sub-nodes and all Θ DOF. Recognizing 

that no external forces are applied and expanding the lower portion:  

 0,,,,,,  utuutektukte dKdK  (3-18) 

Substituting the known and unknown displacements of Eq. (3-16) into Eq. (3-18), it 

can be rewritten as:  
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q

m
mutuutemktukte YdKdK   (3-19) 

Since the transverse stress resultants should be in equilibrium of any cross section in 

the longitudinal direction, the coefficient of Y[m] must be zero, which leads to  

    
][,,,

1

,,][, mktukteuutemut dKKd


  for m=1,…,q  (3-20) 

Or in more explicit form: 
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 for m=1,…,q  (3-21) 

Thus, all terms which satisfy Eq. (3-21) meet part (b) of the criterion #2. As a 

practical matter this may be completed term-by-term as suggested above, or Ke,t may be 

assembled into a global matrix including all q terms. 

3.4.1.3 Assembly of RGD 

Recall that the constraint matrices represent the means by which the mechanical 

criteria of Table 1 are enforced on the general FSM displacement fields (vectors). In the 

case of the GD space (of particular importance because it reflects the fundamental space 

for GBT and in essence all deformations consistent with even expanded beam theories) 

the requirement is that criteria #1 and #2 are enforced. Criterion #3 will be employed to 

separate G and D. The strategy of assembling RGD is outlined as follows: 1) assemble 

[RGD][m] for each longitudinal term, m; 2) assemble each [RGD][m] into the larger RGD. 

Note, each [RGD][m] has sub-matrices as given below: 

    T
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mVmGDmGD RRRRRRRR ][,][,][,][,][,][,][,][   (3-22) 
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Based on the derivations of the preceding two sections, the submatrices in [RGD][m] 

are determined as follows, and follow directly from [26]. For RGD,Vm[m], the selection is 

arbitrary for the construction of RGD, thus the simplest solution is set RGD,Vm[m] equal to 

the nm-order identity matrix: 

 IR mVmGD ][,  (3-23) 

For RGD,Vs[m] the sub-node warping displacements (Vs[m]) follow from Eq. (3-12): 

     ][,][, mVmGDvmVsGD RBR      (3-24) 

Vlasov‟s hypothesis provides RGD,Um[m] and RGD,Wm[m] in the form of Eq. (3-9): 
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Finally enforcing equilibrium at the cross-section level provides the remaining DOF, 

and thus RGD,Us[m], RGD,Ws[m], and RGD,Θ[m] are determined from Eq. (3-21): 
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Therefore, [RGD][m] may be obtained from its partitions, and RGD may be assembled for 

each longitudinal term as a partitioned diagonal matrix: 
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3.4.1.4 Separation of RGD into RG and RD 

Criterion #3 of Table 1 states that the only difference between the G and D space is 

whether or not the cross-section distorts. The GD space is characterized by the fact that 
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warping displacements at the main nodes (Vm[m]) fully define the displacement field. 

Thus, the separation of G and D represents the determination of which Vm[m] lead to 

cross-section distortion, and which do not. 

As discussed previous, instead of mathematically exercising criterion κxx = 0, the G 

space is understood to be spanned by 4 warping deformation fields: pure axial, bending 

about any two non-coincident axes, and torsion. The remaining Vm[m] (size nm-4 DOF) 

span the D space, which may be organized arbitrarily, though enforcing orthogonality is 

convenient as shown in [26-28]. In addition, when nm≤4, cross-section like L, T, and X 

has no remaining D space. These cross-sections have their shear center exactly at the only 

internal main node. Consequentially, the warping function for pure torque is constantly 

zero over the whole cross section. In this sense, there are only three global buckling 

modes left for these cross-sections and the pure torsional buckling mode will take place 

among local buckling modes [51].  

To utilize the above information we seek a transformation matrix, HGD, such that: 
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Introduction of this definition into Eq. (3-1), results in: 
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As shown, construction of RGD, HG, and HD lead to the separated RG and RD 

constraint matrices, which are desired. Accordingly, construction of H is performed for 

each longitudinal term m. Since warping vectors for each longitudinal term are 
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proportional to each other and the magnitude can be any value, [HG][m] is assigned the 

same for all longitudinal terms m.  

Calculations of [HG][m] and [HD][m] are the same as in [28]. [HG][m] are the warping 

vectors defined by the warping distributions of the four global buckling modes (one axial 

mode, two bending modes, and one torque mode). The warping distributions of these four 

modes are illustrated in Figure 3-3 for a channel section. Note, the dimensions and 

properties of the channel section are not provided for the concept of these distributions is 

the important thing for this illustration. Also note, G modes may be defined about 

principle axes or about geometric axes. Also the pure torsion mode does not have to be 

about the shear center, although CUFSM (and GBT) do choose to do this. 

    

(a) Axial 

(b) Major-axis 

bending 

(c) Minor-axis 

bending 

(d) Torsional 

Figure 3-3 Warping vectors of four global modes 

[HD][m] is found by enforcing orthogonality to the G space within GD, the 

orthogonality condition follows the one used in GBT: 

 0)()()(  dxxtxvxv ji   (3-30) 



93 

 

where the integral is over the whole cross-section, t(x) is the thickness, while vi(x) and 

vj(x) are two arbitrary warping functions of the G and D space, respectively. Finally, this 

leads to the following condition by integrating over the cross-section: 

     0
][][


mG

T

mD HAH   (3-31) 

where A is a matrix containing only cross section information. Hence, [HD][m] is also the 

same for all the longitudinal terms. 

Specifically, RGD is a partitioned diagonal matrix with q, n×nm submatrices, where q 

is the total number of longitudinal terms, thus the complete dimension is (q·n)×( q·nm). 

Similarly, HG is a partitioned diagonal matrix populated with q, nm×4 submatrices, and 

HD with q nm×(nm-4) submatrices. Consequentially, the resulting constraint matrices of 

RG and RD are also partitioned diagonal matrices with q n×4 and n×(nm-4) submatrices in 

the diagonal (similar to Eq. (3-27)), respectively. 

3.4.2 Derivation of RL 

Determination of the L space (and RL) is based on criteria established in Table 1: 

Vlasov‟s hypothesis is enforced, there is no longitudinal warping, and the transverse 

cross-section does not have to be in equilibrium. Vlasov‟s hypothesis connects U and W 

of the main nodes to the warping displacement of the main nodes V. Specifically, since 

Vm[m] is zero, Um[m] and Wm[m] must also be zero. The condition of no warping at the main 

nodes and linear warping distributions also implies no warping for the sub-nodes, 

therefore Vs[m] is zero. Thus, for the L space: 
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  0][, mVmLR ,  0][, mVsLR ,  0][, mUmLR  and  0][, mWmLR   (3-33) 
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The remaining displacements are local w of the sub-nodes, local w of the external main 

nodes, and  at all nodes. Transformation of the local w implies global displacements of 

the sub-nodes: Us[m] and Ws[m]. Thus, for the L space: 

  03][, SR mUsL  ,  03][, CR mWsL  , and  IR mL 0][,    (3-34) 

where, S3 and C3 are diagonal matrices (both with (ns+2)×(ns+2) dimension), I is the an 

n×n identity matrix, and S3 is expressed as diag(-sin1,-sin2,…), and C3 as 

diag(cos1,cos2,…). Note, i is the strip angle at the location of the given i-th node, and 

for sub-nodes the strip angle is the same for both nodes in the strip, by definition. Finally, 

the full RL matrix, a partitioned diagonal matrix similar to Eq. (3-27), is constructed for 

all m terms from the RL[m] sub-matrices. 

3.4.3 Derivation of RST/RO 

The applicable criterion for the ST/O space is that Vlasov‟s hypothesis may be 

violated: transverse strains and/or the in-plane shear are non-zero, and a non-linear 

warping distribution between main nodes may exist. From a mechanical point of view 

like in GBT, this space includes the shear and transverse extension modes.  In addition, 

this space is essentially a space exclusive of the GDL space but within the standard FSM 

space – a null space of GDL space mathematically. Therefore, there are two approaches 

we can use to define this space [28]: 1) define a set of independent vectors with unit 

transverse extensions (the T space, RT) and unit shear deformations (the S space, RS); 2) 

employing a more mathematically approach, defined directly as the null space of GDL 

(the O space, RO). Null space of matrix A is a set of all vectors x for which Ax=0 in linear 

algebra.  
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For the ST space, S and T may be formed from strip-wise shear and transverse 

extension. However, different strategies lead to slightly different RS and RT spaces, e.g. 

+1,-1 for v in a strip, or +1, 0 for v in a strip. Though S and T spaces are defined 

separately, there is not much practical importance for this separation. Therefore, the ST 

space (RST) a union of S and T spaces is considered as a whole in most applications. 

For the O space, a more mathematical approach is employed and RO is defined as the 

null space of the GDL space. Orthogonalization against the GDL space may be in terms 

of Ke, Kg, or in a vector sense, via: 

       0' 
mGDLme

T

mO

e RKR ,       0' 
mGDLmg
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mO

g RKR ,     0' 
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mO

v RR  (3-35) 

0GDLe
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e RKR ,   0GDLg

T

O

g RKR ,   or  0GDL

T

O

v RR  (3-36) 

Since Ke, Kg and RGDL are known, the constraint matrix 
e
RO, 

g
RO and 

v
RO are 

respectively defined (as strain energy orthogonal, work orthogonal, and vector 

orthogonal) although they are not unique.  It is worth mentioning that Ke is the elastic 

stiffness matrix, and Kg is the geometric stiffness matrix when the cross-section is under 

axial compression. The O basis obtained through Eq. (3-35) implies the O modes are 

defined within each longitudinal term, without consideration of the potential coupling 

among longitudinal terms, and is referred to as 
e
R

’
O, 

g
R

’
O, and 

v
R

’
O, which are all 

partitioned diagonal matrices However, O modes defined by Eq. (3-36) include all the 

longitudinal terms (up to q); thus the problem size is significantly enlarged. Since the Ke 

and Kg matrices are not partitioned diagonal matrices for non-simply supported boundary 

conditions, the O spaces defined with respect to them are no longer a block diagonal 

matrix as shown in Eq. (3-27) because of the coupling between the longitudinal terms. 
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Instead, it is a fully populated matrix, (4×n×q)×(4×n×q), where n is total nodes and q is 

the total longitudinal terms.  

The other mode spaces defined above (RST and all kinds of RO) are all equivalent.  

They may lead to slight different results in modal decomposition and identification. 

Recommendation based on numerical studies will be made later in this chapter. 

3.5  Bases 

Combined, the defined constraint matrices of each buckling mode classes (G, D, L, 

ST/O) span the FSM space and represent a transformation inside the standard FSM space. 

In fact, they form an alternative basis of the standard FSM space organized in G, D, L, 

and ST/O. While the RG, RD, RL, RST/RO matrices define the G, D, L, and ST/O spaces, 

transformation of the bases inside those spaces is also still possible, and potentially 

desirable. 

3.5.1 Natural basis 

In the constrained Finite Strip Method the initial separation of the general 

deformations into the G, D, L, ST/O spaces employ what is termed as the natural basis. 

The full derivation of the natural basis has been illustrated in Section 3.4 by examining 

the associated mechanical definitions of each subspace G, D, L, and ST/O. In a practical 

manner, the constraint matrix for G, D, L, and ST/O can be constructed for each 

longitudinal term, m, individually as demonstrated in the derivation. Note, O space 

should be defined by Eq. (3-35) excluding the potential coupling between longitudinal 

terms. Thus, the constraint matrix R including G, D, L, and ST/O is a partitioned diagonal 

matrix as shown below: 
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where submatrix [R][m] is the constraint matrix corresponding to longitudinal term m, and 

consists of four sub-matrices [[RG][m] [RD][m] [RL][m] [RST][m] /[RO][m]]. 

However, for constraint matrix of O space defined by Eq. (3-36) considering the 

potential coupling between longitudinal terms, the constraint matrix R including G, D, L, 

and ST/O is a fully populated matrix.  
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 (3-38) 

Each sub-matrix is organized in a similar manner as the sub-matrices in Eq. (3-37), 

and consist of four sub-matrices. However, in this case, only sub-matrix [RO][mn] of the 

four sub-matrices is nonzero for the off-diagonal sub-matrices in Eq. (3-38). 

The natural basis has its own attractiveness because it is a straightforward 

enforcement of the mechanical criteria underlying each mode. Further, the natural basis 

defines the subspaces of G, D, L and ST/O, which are essential to the constrained 

eigenvalue problem. However, the natural basis is not similar to the modal spirit of GBT 

and thus an alternative basis is also explored. 
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3.5.2 Modal basis 

Suppose the constrained eigenvalue problem is solved within a certain subspace (G, 

D, L or ST/O) defined with the natural basis. The resulting eigenvector spans the original 

natural basis subspace. Thus the new spanned subspace can be seen as another base 

system for the same subspace. One important characteristic of this new base system is 

that the base vectors of each subspace (G, D, L and ST/O) are orthogonal to each other, 

with respect to the elastic (or geometric) stiffness matrix. Also, it has some physical 

appeal, similar to GBT, in that only a few basis vectors may be needed within a subspace 

since the deformations involve the full cross-section. 

The modal basis is defined through the constrained eigenvalue solution M – each 

subspace. Depending on the loading conditions the eigenvalue solution varies and 

accordingly the orthogonal base system. Therefore, the modal basis can be defined by 

using the simplest loading: axial compression (axial modal basis) or the applied loading 

on the member (applied modal basis). The constrained eigenvalue problem is the same as 

in Eq. (3-2) except that the load condition is axial compression for the axial model basis 

and subscript M is uniquely within each subspace (G, D, L, or ST/O). The elastic and 

geometric stiffness matrices are populated with off-diagonal sub-matrices for non-simply 

supported boundary conditions, thus the stability solution is coupled with the longitudinal 

terms even within the pure modes. Consequently, the modal basis can be defined either 

with consideration of the coupling effect or not. 

3.5.2.1 Uncoupled modal basis 

Construction of the uncoupled modal basis is basically the same as in [6] except that 

the constrained eigenvalue problem is solved repeatedly for all the longitudinal terms 
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included and the column length is the physical length instead of the unit length. 

Consequently, for each subspace, the orthogonal axial modes can be expressed as follows: 

              0)1(
][][][][][][][


mMmMmgm

T

MmMmem

T

M RKRRKR   (3-39)
 

and the axial modal basis itself is constructed from  

      
][][][ mMmMmM RR    (3-40)

 

The physical result of this methodology is that the pure modes (G, D, L, or O/ST) are 

only orthogonal within each longitudinal term. 

If the constrained eigenvalue problem in Eq. (3-39) is solved for the applied loading 

instead of the axial uniform loading, the applied modal basis can be constructed with 

these eigenvectors as given below: 

      
][][][

~
mMmMmM RR   (3-41) 

3.5.2.2 Coupled modal basis 

If the longitudinal coupling effect is considered, the orthogonality of the pure modes 

for each subspace M is no longer just within each longitudinal term. Thus, the new 

orthogonal axial modes can be expressed as follows: 

  0)1(  MMg

T

MMe

T

M RKRRKR   (3-42)
 

The associated axial modal basis for each subspace M (G, D, L, or O/ST) with each 

longitudinal term is expressed as following: 

 MMM RR    (3-43) 

Similar to the definition of RO in Eq. (3-36), the axial modal basis R  defined here 

are no longer partitioned diagonal matrices.  
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For applied modal basis MR
~

, it can be constructed by using the eigenvectors of the 

similar constrained eigenvalue problem with applied loading instead of the axial uniform 

loading. 

3.5.3 Summary of the bases 

The natural basis is essential to cFSM, though it lacks of physical appeal, while the 

modal basis requires extra computational effort, but has more attractive physical appeal. 

The potential basis choices are summarized in Table 2. Details of how to define the 

subspaces (G and ST) in natural basis are appended, which have negligible impact on the 

solutions (i.e. modal decomposition and identification) though conceptually different. 

Table 3-2 Summary of the bases 

Su
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(a) G modes may be defined about principle axes or about geometric axes. Also pure torsion mode 

does not have to be about shear center, though CUFSM (and GBT) does choose to do this. 

(b) S and T may be formed from strip-wise shear and transverse extension, e.g. +1,-1 for v in a strip, 

or +1,0 for v  in a strip leading to different S and T spaces. It is (1,0) in our definition. 

(c) Uncoupled basis means the null space of GDL or the orthogonalization is performed inside each 

longitudinal term m.  The resulted basis is a block diagonal matrix.  Coupled natural basis refers to 

O

v

O

g

O

e

o RorRorRR  while GDL spaces are the same. 
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For natural and modal bases (whether coupled or uncoupled), there are several 

choices of other space definitions (ST/O). In the current literature, and as provided in the 

previous implementation of CUFSM (version 3.12), the solution space is within one 

longitudinal term so no distinction between uncoupled and coupled bases is necessary. 

Note, with the preceding notation all currently existing cFSM basis definitions (only 

involving a single longitudinal term m) may now be defined for general end boundary 

conditions, the: 

 natural base system (RG, RD, RL, and RST),  

 partially orthogonal axial modal basis (
'

GR , '

DR , '

LR , and 
'

STR ), and 

 fully orthogonal axial modal basis (
'

GR , '

DR , '

LR , and 
'

O

e R ).  

Note, the above base systems follow the original notions in previous cFSM. For 

general end boundary conditions, partially or fully orthogonal are obsolete. Here the 

focus is on natural basis, axial modal basis or applied modal basis, coupled or uncoupled 

versus of said bases.  

Obviously, other basis set choices are possible depending mainly on the selection of 

other space definitions (ST/O). 

3.6  Normalizations 

For modal identification purpose, base vectors ought to be appropriately normalized 

to provide uniform classification results. 

The contribution coefficients (c) in Eq. (3-3) are dependent on the normalization (i.e. 

scaling) of the base vectors (columns of R, R , or R
~

). Normalization may be achieved in 

a variety of ways. In existing work [25, 28], three options have been consistently pursued: 
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vector norm; strain energy norm; and work norm. If Ri is the i
th

 column base vector of the 

natural basis R (here we only use natural basis R to illustrate the definitions) the 

normalizations are mathematically defined as: 

 vector norm: normalized by setting 1iR ,  

 strain energy norm:  normalized by setting 1ie

T

i RKR , and,  

 work norm: normalized by setting 1
ig

T

i
RKR .  

where, 
e

K is the elastic stiffness matrix and 
g

K is the geometric stiffness matrix based 

axial uniform loading as shown in Eq. (3-39) or (3-42). 

Given the rather extensive set of potential possibilities, based on bases and 

normalization, Table 3-3 provides a full summary. Note, in Table 3-3, the basis could be 

coupled or uncoupled basis. 

3.7  Modal decomposition 

As briefly mentioned in Section 3.3, with the constraint matrix in place, it is possible 

to decompose the modes to a specific class or even to a single buckling mode by solving 

the constrained eigenvalue problem of Eq. (3-3). For general boundary conditions, the 

procedure is the same as the existing cFSM except the m longitudinal terms should be 

included, which consequently enlarges the problem size.   

To illustrate the capability of cFSM for general boundary conditions, the G, D, and L 

modes are decomposed from the general FSM solution using the natural basis described 

before and the critical loads are plotted in Figure 3-4 against the general FSM solution for 

SSMA stud section 250S137-68 [49] under axial compression with C-C boundary 
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conditions. The total number of m longitudinal terms included in the FSM or cFSM 

solution is 36. Note, although several bases are defined in Section 3.5, the decomposed 

solution inside a mode class (G, D, and L) is independent of the selection of bases and 

also whether it is normalized or not. Corresponding generalized beam theory (GBT) 

solutions are also given in Figure 3-4. Though GBT enriches the cross section 

deformation with modal based degree of freedom finite element discretization is 

employed to represent the longitudinal field. 
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Figure 3-4 FSM and pure cFSM solutions against GBT solutions 
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Table 3-3 A summary of normalized subspaces 

Space Orthogonalization 

Normalization 

Strain Energy Work Vector 

M=G,D,L or 

combinations 

No (Natural) 
||e

MR  
||g

MR  
||v

MR  

Axial Modal 
||e

MR  
||g

MR  
||v

MR  

Applied Modal  ||~ e

MR  
||~ g

MR  
||~ v

MR  

ST 

No (S+T) 
||e

STR  
||g

STR  
||v

STR  

Axial Modal (S+T) 
||e

STR  or 
|||| e

T

e

S RR   
||g

STR  or 
|||| g

T

g

S RR   
||v

STR  or 
|||| v

T

v

S RR   

Applied Modal 

(S+T) 
||~ e

STR  or 
|||| ~~ e

T

e

S RR   
||~ g

STR  or 
|||| ~~ g

T

g

S RR   
||~ v

STR  or 
|||| ~~ v

T

v

S RR   

O 

No (null of GDL) 

||e

O

eR  
||g

O

eR  
||v

O

eR  

||e

O

g R  
||g

O

g R  
||v

O

g R  

||e

O

vR  
||g

O

vR  
||v

O

vR  

Axial Modal (null of 

GDL) 

||e

O

eR  
||g

O

eR  
||v

O

eR  

||e

O

g R  
||g

O

g R  
||v

O

g R  

||e

O

vR  
||g

O

vR  
||v

O

vR  

Applied Modal (null 

of GDL) 

||~ e

O

eR  
||~ g

O

eR  
||~ v

O

eR  

||~ e

O

g R  
||~ g

O

g R  
||~ v

O

g R  

||~ e

O

vR  
||~ g

O

vR  
||~ v

O

vR  
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The conventional FSM solution has three buckling regimes: local, distortional, and 

global buckling. These may be ascertained along the length by examining the first mode 

at each length. In the local buckling regime, the cFSM solution for pure local buckling 

shows excellent agreement with the conventional FSM solution. The solution for pure 

distortional buckling modes by cFSM suggests a stiffer response than conventional FSM, 

as shown in Figure 3-4. For long members, the cFSM curve for pure global buckling 

modes shows the same tendency as conventional FSM but modestly higher critical loads. 

These observations are consistent with previous cFSM results on simply supported 

boundary conditions. 

Comparing the FSM and GBT, the general solutions from the conventional FSM and 

GBT report almost the same results with the relative differences within 1%. For longer 

members, the pure local and distortional buckling modes show a significant difference in 

critical loads between cFSM and GBT. This is because both cFSM an GBT need finer 

mesh (increase the longitudinal terms in the analysis for cFSM) to capture the multi-wave 

local and distortional modes. As studied in Section 2.5, the most important longitudinal 

terms are near L/Lcr and L/Lcrd for pure local and distortional buckling modes, 

respectively, where Lcr and Lcrd are the separate local and distortional buckling half-wave 

lengths of the associated signature curve. In the GBT analysis, mesh sensitivity must be 

taken into consideration when using finite element discretization for longitudinal field. 

To capture the relative short half-wavelength local or distortional buckling behavior of a 

long member, the maximum element size should be less than the half-wavelength of the 

local or distortional buckling mode. Thus, the GBT results shown in Figure 3-4 require a 

finer mesh to obtain a better accuracy.  
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To illustrate this, pure local and distortional solutions are re-analyzed and provided 

in Figure 3-5 by using the longitudinal terms recommended previously for cFSM (see 

section 2.5). For longer members, the local and distortional plateaus are obtained similar 

to what is implied in Figure 2-17. 

Additional fundamental differences also exist between cFSM and GBT, owing 

primarily to the different mechanical backgrounds of the two methods. For example, in 

GBT the global buckling modes are handled by a beam model with a constitutive law that 

follows the 1D form of Hooke‟s law; while cFSM solutions are calculated on a plate 

model that obeys the 2D form of Hooke‟s law, this results in a systematic difference in 

the reported G solutions. Further discussion can be found in [27]. 
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Figure 3-5 Modal decomposition of cFSM 

A comparison of the identified mode shapes for FSM and pure mode cFSM is 

provided in Figure 3-6. At L
*
=490 mm in Figure 3-4, the 1

st
 buckling mode is shown in 
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Figure 3-6(a), this mode may be visually identified as distortional buckling (though other 

modes are present as shown later in the modal classification) with a critical load of 220.6 

kN, and the 5
th

 mode, as shown in Figure 3-6(b), is identified as local buckling with a 

critical load of 227.3 kN. The cFSM pure distortional and pure local buckling modes are 

also provided in Figure 3-6(c) and (d) with critical loads of 250 kN and 230.4 kN, 

respectively. Consistent with the constraining nature of the pure modal solutions, the 

buckling loads are slightly higher than the general FSM, especially for distortional 

buckling. 

  

(a) 1
st
 mode of FSM (b) 5

th
 mode of FSM 

  

(c) Distortional mode of cFSM (d) Local mode of cFSM 

Figure 3-6 Buckling modes of the conventional FSM and cFSM 

Modal decomposition may also be used to search the participation of longitudinal 

terms for pure local and distortional buckling, and then these longitudinal terms used to 



108 

 

force the member to buckle in local or distortional buckling mode as described in the 

application with DSM section in Chapter 6. 

3.8  Modal Identification 

The G, D, L, and ST/O subspaces, as defined by the constraint matrices R, provide a 

complete alternative basis to the standard FSM basis and represent a transformation of 

the solution from the original nodal degrees of freedom to a basis that separates G, D, L, 

and ST/O modes. After appropriate normalization (i.e., scaling), this basis may be used to 

evaluate the contribution of the different deformation modes (G, D, L, and ST/O) on any 

general deformed shape. This procedure is known as modal identification. Modal 

identification provides a means to determine the contribution of the different buckling 

classes (G, D, L and ST/O) in a given FSM stability solution. For the case of FSM with 

general boundary conditions, the essential idea of modal classification is the same as in 

existing cFSM except the summation over m longitudinal terms increases the problem 

size. In addition, coupled and uncoupled bases increase the complication as well.  Using 

the defined cFSM bases, natural (R) or modal basis ( R ,or R
~

), any nodal displacement 

vector d, which can be any deformed shape or buckling mode, may be transformed into 

the basis spanned by the buckling classes, via 

 dRc 1 , dRc 1  or dRc 1~  (3-44) 

where the coefficients in c represent the contribution to a given column of R ( R ,or R
~

). 

Modal classification can be achieved by summing the coefficients corresponding to the 

columns of a given class (G, D, L or ST/O). Hence, for the categorized buckling classes, 
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G, D, L, and ST (or O), with organized constraint matrix R, the contribution relation in 

Eq. (3-44) may be rewritten as:  

 

 





















OST

L

D

G

OSTLDG

C

C

C

C

RRRRRd

/

/

 

 (3-45) 

where CG, CD, CL, and CST/O are column vectors that include the contribution coefficients 

for each vector inside each deformation class. Note, the coefficients are dependent both 

on the selected basis (e.g. ST vs. O) and on the normalization of the base vectors (i.e. the 

columns of R). 

Two options are considered for calculating the participation (pM) of space M in a 

general deformation (d) given the contribution coefficients (c): 

 L
1
 norm: which also may be regarded as the absolute sum (Manhattan distance), 

and is the method employed in CUFSM 3 [25]: 

 





4

/,,,
11

/
OSTLDGM

MMM CCp   (3-46) 

 L
2
 norm: also known as Euclidean norm: 

 



4

/,,,
22

/
OSTLDGM

MMM CCp   (3-47) 

where ||·||1 and ||·||2 are defined as: 

 
i

ixx :
1

  and 
i

ixx
2

2
:  (3-48) 

For block diagonal bases (e.g., natural basis, uncoupled modal basis), solely for 

computational efficiency, the modal classification can be performed for each longitudinal 

term, instead of solving Eq. (3-44) for all the longitudinal terms as a whole. The 

http://en.wikipedia.org/wiki/Manhattan_distance
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computational effort is significantly reduced, especially when many longitudinal terms 

are included in the analysis. Also, the classification can be performed within each 

longitudinal term based on L
1
 or L

2
 norm and then added together with weighting factors 

that are the contribution of each longitudinal term m, as shown in [53]. This is referred to 

as the “weighted factor” approach to modal classification. Though this approach is 

obsolete, some results can be found in [53]. 

To illustrate modal classification for general boundary conditions, the conventional 

FSM stability solution provided in Section 3.7 for modal decomposition has been 

examined for the participation of the G, D, L, and ST/O. The classification results at three 

separate lengths (local, distortional and global buckling regimes) are provided for the 3 

different cFSM bases with the corresponding GBT results in Table 3-4. Note, the natural 

basis R refers to the basis that consists of [RG RD RL RST] with vector normalization; while 

the axial modal bases consist of ST space with vector normalization in Section 3.5. The 

uncoupled axial modal basis are defined without consideration of the coupling of 

longitudinal terms as in Eq. (3-39) while the coupled axial modal basis considers the 

coupling of longitudinal terms as in Eq. (3-42). Note, for natural basis and the uncoupled 

axial mode basis, the constraint matrices are block diagonal.  

Table 3-4 Participation of G, D, L and ST for C-C boundary conditions, vector norm 

G D L ST G D L ST G D L ST

L
1 0.5 1.4 92.7 5.5 0.9 31.8 63.6 3.6 96.0 1.2 1.4 1.5

L
2 1.3 6.9 88.9 2.9 2.2 79.6 17.4 0.7 99.3 0.5 0.1 0.1

L
1 1.8 5.4 90.1 2.7 1.8 62.0 34.7 1.5 96.6 1.2 1.8 0.4

L
2 1.3 7.1 90.8 0.7 2.2 80.6 16.9 0.2 99.3 0.5 0.2 0.0

L
1 1.7 6.4 87.8 4.1 2.0 62.2 34.7 1.1 98.2 0.8 0.9 0.2

L
2 1.3 7.0 91.1 0.6 2.5 83.9 13.4 0.2 99.5 0.4 0.1 0.0

GBT 0.2 1.5 98.3 n/a 3.6 52.9 43.6 n/a 99.8 0.1 0.0 n/a

Local Regime at 137 mm Dist. Regime at 490 mm Global Regime at 2009 mm

Axial modal 

(uncoupled)

Axial modal 

(coupled)

Natural 

Basis
Sum 

Option
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In general, Table 3-4 shows that even at physical lengths where one buckling class 

dominates, the different buckling classes nearly always participate in the solution. For 

example, the distortional buckling mode at 490 mm shows this interaction. Even though, 

for certain cases, the mode is nearly pure mode by one dominated buckling mode class, 

for instance, the global regime in Table 3-4.  

Obviously, modal identification is sensitive to basis as reported in Table 3-4, where 

slightly different participation results are found between different bases. More 

significantly, summation options for the contribution coefficients C have a big impact on 

the participation results. The distortional buckling mode at 490 mm demonstrates the 

sensitivity to solution methods. Paradoxically, the L
1
 norm option results for the natural 

basis suggest that local buckling dominates for what appears to be a distortional buckling 

mode (see Figure 3-6). When the L
2
 norm option is employed, all the bases report 

consistent participation results with a distortional buckling contribution around 80%. The 

sensitivity of modal identification to norm (L
1
 or L

2
) on contribution coefficients has been 

studied by the author in [52] for the signature curve. The key findings are reconstructed 

for the member studied here. The modal identification results with vector normalization 

are shown in Figure 3-7. In Figure 3-7(a), modal identifications of natural and axial 

modal bases show significant differences in the local/distortional transition regime when 

using L
1
 norm; while negligible differences are found when using the L

2
 norm. This trend 

can also be found from Table 3-4, that natural, uncoupled and coupled axial modal bases 

provide consistent and relatively close participation when L
2
 norm is used. The fact that 

the L
2
 norm is able to provide participation predictions that are nearly independent of 

basis, as shown in Figure 3-7 (a) and Table 3-4, suggests that the L
2
 norm for 
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classification holds distinct advantages. Figure 3-7(b) further illustrates the difference of 

L
1 

and L
2
 norm in terms of participations for the same basis. The consistent result given 

by axial modal basis of both L
1 

and L
2
 norm suggests that when selecting the basis, axial 

modal basis should be preferred.  

Basically, cFSM and GBT report similar classification results although with obvious 

differences in the details.  The GBT basis definition is more similar to the axial modal 

basis in cFSM, and the sum option on the contribution coefficients with L
1
 norm.  Close 

results can be found between GBT and cFSM with L
1
 norm, especially in the distortional 

regime at 490 mm as given in Table 3-4. 

Similarly, participation of G, D, L, and ST/O using work normalization can be solved 

and is provided in Table 3-5. The classification results are similar to those in Table 3-4 

though slightly higher ST participation is observed especially for the natural basis. The 

inconsistent participation in the distortional regime predicted by the L
1
 norm still exists. 

Although not as close as those in the vector normalization case, the L
2
 norm still provide 

consistent classification independent of bases. 
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(a) Comparison between different bases of same summation norm 
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Figure 3-7 Sensitivity of modal identification to L
1 

and L
2
 norm in signature curve 
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Table 3-5 Participation of G, D, L and ST for C-C boundary conditions, work norm 

G D L ST G D L ST G D L ST

L
1 2.5 1.8 66.8 28.9 1.5 24.6 61.8 12.1 84.7 3.5 2.6 9.2

L
2 3.7 6.7 78.3 11.3 3.1 65.8 28.8 2.2 97.5 1.5 0.3 0.7

L
1 7.1 4.9 75.8 12.2 2.8 46.4 45.1 5.8 90.9 3.9 2.1 3.1

L
2 3.6 6.4 86.9 3.2 3.0 63.8 32.3 0.8 98.0 1.4 0.3 0.3

L
1 3.8 5.3 81.6 9.3 2.9 51.3 43.5 2.3 98.1 1.0 0.4 0.6

L
2 1.9 5.6 91.3 1.2 3.5 74.7 21.4 0.4 99.5 0.4 0.0 0.1

GBT 0.2 1.5 98.3 n/a 3.6 52.9 43.6 n/a 99.8 0.1 0.0 n/a

Dist. Regime at 490 mm Global Regime at 2009 mm

Natural 

Axial modal 

(uncoupled)

Axial modal 

(coupled)

Basis
Sum 

Option

Local Regime at 137 mm

 

3.9 Recommendation of basis, normalization, and summation of 

participation options 

Different bases, orthogonalization, and normalization options are available when 

employing cFSM, as presented previously. Though all the bases are mechanically correct 

and equivalent, they do perform differently with respect to modal decomposition and 

modal identification. Systematic explanation and study of the selection of basis and 

normalization has been provided in [52] by the author based on a study for signature 

curve (S-S results). Combined with modal decomposition and identification in the 

previous section, recommendations are provided in this section for users of cFSM.  

Although the natural basis is necessary, the modal basis is far more powerful. The 

one exception to this is in the G space where separation of the deformations into 

orthogonal directions has certain conveniences. For general use the modal basis with an 

axial reference load is logical, while the extension to other reference loads (e.g., pure 

bending) is advantageous for certain problem specific studies. In addition, although the 

coupled modal basis is more realistic, the uncoupled modal basis holds the advantages in 

computational efficiency and simplicity. Uncoupled modal basis is recommended. 



115 

 

Normalization of the base vectors is required, but strain energy norm is not 

recommended. Both vector norm and work norm are viable options. Mesh sensitivity of 

the vector norm in modal identification solutions makes the work norm preferred when 

possible. Work norm is recommended. However, for simplicity, vector norm is also 

recommended. 

Normalization of the participation results is required, and the simplicity of the L
1
 

norm leads to its adoption in the literature [26-28] and previous versions of CUFSM [25]. 

However, the L
2
 norm is demonstrated herein to significantly reduce dependence on the 

choice of basis when coupled with either the vector norm or work norm. The L
2
 norm is 

recommended and has been implemented in the latest version of CUFSM [54]. 

As far as the definition of the modes that violate Vlasov‟s hypothesis is concerned: 

the O space, being the null space of GDL, is mathematically convenient, but the resulting 

modes have little physical sense, and provide no advantage over the more mechanically 

oriented definition of the ST space. Although the ST space is not fully orthogonal to GDL 

(and hence termed partially orthogonal previously) it is much more readily 

conceptualized and leads to more consistent modal identification results in studied 

examples. The use of ST definition is recommended. 

3.10  Summary 

In this chapter, the theoretical derivation and implementation of the constrained 

finite strip method (cFSM) for the stability solution of thin-walled members is presented 

for general boundary conditions. The proposed method provides a means of decomposing 

the general deformation field into global (G), distortional (D), local (L) and other (O or 
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ST) modes for general boundary conditions, i.e. simple-simple, clamped-clamped, 

simple-clamped, clamped-free, and clamped-guided.  

The theoretical background of the method for general boundary conditions is shown, 

and the procedure for defining the pure buckling modes (in the natural basis, R) is 

explicitly presented. Alternatives for defining the other (O) modes either as Shear (S) and 

transverse extension (T) modes, or the more mathematical notion of the null of the GDL 

space, are presented and related options discussed. Utilizing the natural basis to define 

the mode basis (axial or applied) by solving the constrained eigenvalue problem within 

each space is presented. Summary of the available bases and normalization is discussed. 

Numerical examples of modal decomposition of the stability results are presented 

using the developed cFSM methodology and compared with Generalized Beam Theory 

(GBT). Further, modal identification (providing the participation in the G, D, L, and O or 

ST classes) is studied for FSM stability modes. Recommendations for basis, 

normalization of the base vectors, normalization of the participation results, and selection 

of the ST or O space are made for users of cFSM. 
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Chapter 4 Modal Identification for elastic buckling FE analysis  

 

 

4.1 Introduction 

With all the advances in computational power, the finite element method (FEM), 

utilizing shell elements, has become more common in analyzing the stability of thin-

walled structures. FEM‟s unique applicability to model complex geometric and boundary 

conditions make it especially popular. However, for the elastic buckling problem, FEM 

requires a laborious and subjective mode identification using visual investigation of the 

mode shapes. A successful quantitative mode identification method, using the constrained 

finite strip method (cFSM), has been proposed for FEM buckling analysis by Ádány, et 

al. [38]. The method uses the original cFSM base functions, which correspond to simple-

simple (S-S) supported end boundary conditions. Earlier studies [38] show that the S-S 

cFSM base functions are applicable only to end conditions without (local or global) 

translational movement.  

Recently, cFSM has been extended and implemented by the author and colleagues 

[46, 53, 54]. New base functions are proposed for more general end boundary conditions, 

namely: clamped-clamped (C-C), simple-clamped (S-C), clamped-guided (C-G), and 

clamped-free (C-F). In this chapter, these new base functions are applied for the modal 

identification of buckling analyses with general boundary conditions in FEM. More 
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importantly, a fundamental set of base vectors are proposed, which can potentially handle 

arbitrary end boundary conditions. 

4.2 Extrapolation of cFSM base function to FEM context 

To complete modal identification of an FEM solution, base vectors or functions 

including the separation of fundamental global (G), distortional (D), local (L) and shear 

and transverse extension (ST/O) are generated from the constrained finite strip method 

(cFSM). Since shell finite element solutions have in general 6 degrees of freedom (DOF) 

(3 translational and 3 rotational displacements) while in FSM there are 4 DOF 

displacements (i.e., 3 translational displacements (U, V, W) and 1 rotational displacement 

about longitudinal direction (Ө)) appropriate extrapolation of the base function to the 

FEM context is necessary. Based on the local FSM coordinates (Figure 2-1), the other 

two rotational displacements can be interpolated from the FSM displacement shape 

functions.  

Therefore, rotation displacement about x-axis is obtained via: 

y

w
x




  (4-1)

 

Rotation about z-axis, which may be referred to as the drilling degree of freedom, 

can be handled in two ways: 1) ignore the normal rotation by set the drilling DOF zero 

(This does not imply there are no Өz rotation in global coordinates because of the 

transformation from local to global coordinates); 2) interpret the drilling DOF as a true 

rotation of the vertex node: 
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In the studies, the drilling DOF is handled by following the first method. If the 

analysis has significant geometric and/or material nonlinearity, using the latter may be 

beneficial. It is worth noting here that in ABAQUS shell element library, there are some 

elements excluding the drilling DOFs such as S9R5, S8R4, and S4R5, etc. ABAQUS 

usually doesn‟t report the rotational displacements for these elements, this poses a 

problem for our modal identification in which the rotational displacements are necessary 

to correctly identify buckling modes. 

In case the nodes do not coincide between FSM and FEM. Interpolation can be used 

based on the transverse and longitudinal shape functions in FSM. 

It is worth noting here that special attention must be paid to the coordinate systems 

used in FSM and FEM. FSM‟s use of a left-handed coordinate system means FEM and 

FSM coordinate systems are nearly always different, therefore transformation of the 

displacements to the FEM solution is required. 

4.3  Identification Method 

4.3.1 Minimization problem 

Once the base functions in the FE context are derived from the cFSM base functions, 

any FEM eigenvector can be approximated by a linear combination of these base 

functions. In other words, the underlying idea is that given the base functions RFE 

including a set of base vectors in column, a linear combination coefficients c of these 

base vectors is sought to fit the FE displacement vector d. However, the system of linear 

equations to be solved is normally an overdetermined system. Such a system usually has 

no solution, so the goal is instead to find the coefficients c which fit the equations best.  
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The problem can be mathematically expressed as: 

cRdd FEFEerr   (4-3)

 

where, derr is the residual error of the approximation, RFE is base functions in the FE 

context, and c is the contribution coefficients. This is a linear least square problem where 

the best approximation is defined as that which minimizes the sum of the squared residual 

error. Therefore, a minimization problem given below is solved to find the best 

approximation: 

err

T

errddmin  (4-4)

 

Substituting Eq. (4-3) into Eq. (4-4), the least square problem can be rewritten as 

   cRdcRd FEFE

T

FEFE min  (4-5)

 

Provided that the base vectors in RFE are linearly independent, the least square 

problem has a unique solution based on the minimum condition: 

    
0



dc

cRdcRdd FEFE

T

FEFE  
(4-6)

 

which leads to the normal equation for the optimal solution c* that provides the minimal 

sum of the squared residual error: 

FE

T

FEFE

T

FE dRcRR *  (4-7)

 

4.3.2 Participation evaluation 

Similar to modal identification in cFSM, two options are available as to how the 

participation of each mode class M (G, D, L, and ST/O) is summed: 

 L
1
 norm (used in [25]): 
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 L
2
 norm:  
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
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4
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*

2
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OSTLDGM

MMM ccp   (4-9) 

where ||·||1 and ||·||2 are defined as: 


i

ixx :
1

  and 
i

ixx
2

2
:  

The modal identification has shown near independence of choices of bases when 

using the L
2
 norm in cFSM. Since the FEM base functions are derived from cFSM base 

functions through interpolation based on the shape functions; logically, L
2
 norm is also 

preferred in the FE modal identification. Therefore, the FE modal identification in this 

study is based on the L
2
 norm, unless otherwise specified. 

Since the modal identification is sensitive to bases the recommended basis 

uncoupled axial modal basis with ST definition, is employed to provide a consistent 

solution. In addition, vector norm is used, but on the base vectors in FE context (RFE). 

4.3.3 Error estimation 

The most convenient and simple way to measure the error is to evaluate the L
2 

norm 

of the residual error derr relative to the L
2 

norm of the displacement vector dFE: 

FE

T

FEerr

T

err ddddERROR /  (4-10) 

4.4  Numerical studies: FSM-like boundary conditions 

The semi-analytical finite strip method (e.g., CUFSM) is based on specially selected 

longitudinal shape functions to represent the longitudinal displacement field.  These 
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longitudinal shape functions are intended to simulate the actual boundary conditions, i.e., 

S-S, C-C, S-C, C-F, and C-G, while certain restrictions may apply based on these shape 

functions, especially involving the warping displacement, which has great impact on the 

buckling behaviors for a thin-walled member. In terms of the FSM-like boundary 

conditions in this study, the boundary conditions of the FE model are set by the implied 

boundary cases of the longitudinal shape functions in cFSM. FSM-like boundary 

conditions in the FE model can be summarized as given: 

 S-S: warping free at both ends while translational displacements are restrained. 

Warping fixity is added to the nodes in the middle length of the member. 

 C-C: warping fixed at both end while all the translational and rotational 

displacements are restrained also. 

 S-C: warping free at simply support end while translational displacements are 

restrained; warping fixed at clamped end while all the translational and rotational 

displacements are restrained also. 

 C-F: warping fixed at clamped end while all the translational and rotational 

displacements are restrained also; the other end is free. 

 C-G: warping fixed at clamped end while all the translational and rotational 

displacements are restrained also; warping fixed at guided end while rational 

displacements are restrained. 

4.4.1 Finite element modeling 

The shell finite element solution of the eigenvalue buckling analysis is performed in 

the commercial code ABAQUS. The member used to illustrate the application and 
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capabilities of the proposed modal identification method is a symmetric lipped channel 

section.  The dimensions of the cross section are shown in Figure 4-1 and a straight-line 

model is employed (no round corners).  The labeled dimensions are for the center-line 

model. The material is assumed to be elastic, isotropic, and homogenous with a Young‟s 

modulus of 210000 MPa and Poisson‟s ratio of 0.3. The member‟s length is 2000 mm 

with the boundary conditions stated previously under axial compression loading.   

H
=

1
0

0
m

m

B=60mm D
=

1
0
m

m

t=2mm

Discretization:

Web: 5 sub-nodes

Flanges: 3 sub-nodes

Lips: 1 subnodes

 
Figure 4-1 Dimension of the cross section and discretization 

The element type for the study is a 4-node, 24 DOF shell element (S4, a general 

purpose shell element in the ABAQUS library). Parametric studies regarding the mesh 

density have been completed by Ádány et al. using ANSYS [55, 56]. The “relatively 

fine” mesh is used here with 3, 5 and 1 sub-nodes in flanges, web and lips, respectively.  

In addition, the mesh density in the longitudinal direction is specially chosen to ensure 

the aspect ratio of any element is between ½ and 2 except of the lips where the aspect 

ratio is allowed to be as high as 3. The solver to extract the eigenvalues and eigenvectors 

is the Lanczos method.  Selected buckling mode shapes from the FE eigen buckling 

solution (ABAQUS) are illustrated in Figure 4-2. 
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Figure 4-2 FE buckling modes for selected cases  

4.4.2 Associated base function 

Based on the geometry and material properties of the member in the FE models, base 

functions can be built up following the procedure in Chapter 3.  It is logical that the 

boundary conditions in cFSM employed to build up the base functions should match the 

boundary conditions in the FE model. More specifically, base functions R from cFSM are 

based on the boundary conditions corresponding to the FE model‟s, and to interpolate the 

base function RFE in FE context the associated longitudinal shape functions are employed. 

The base functions built up through this definition are called the associated base 
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functions. It is worth noting here that only for special ideal boundary conditions, as 

defined above, are the associated base functions available, otherwise no matching base 

functions in cFSM for FE model‟s boundary conditions exist. Such a situation requires 

ad-hoc base functions as proposed later – and termed the generalized base functions. 

Sample base functions for different boundary conditions are illustrated in Figure 4-3. 

Notice that the base function is characterized by the cross-section deformation and the 

longitudinal half-wavelength (reflected by the longitudinal term m). In addition, the 

differences of base functions for different boundary conditions are observed, as illustrated 

for S-S and C-F. As stated before, the basis in cFSM is uncoupled, thus, the base 

functions of other than S-S ignore the coupling effect between longitudinal terms as 

illustrated for C-F. 
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L1, 
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C-F 

Figure 4-3 FEM base functions for different boundary conditions 
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4.4.2.1Modal identification  

To fully capture modal information in the deformation modes of the FE model, 

sufficient longitudinal terms (associated with the smallest half-wavelength mode needed) 

should be included in the base functions. For the member studied here, the longitudinal 

terms in the cFSM base functions are 40 in total (from 1 to 40 by default unless otherwise 

specified) for all the boundary conditions. The modal identifications are performed on the 

first 50 buckling modes of each case by using the associated base function with 40 

longitudinal terms. This covers those modes that the buckling loads are less than N times 

the first buckling loads (N is usually less than 10). Participations of the G, D, L, and ST 

along with the calculated errors for each mode in each boundary case, specifically S-S, C-

C, S-C, C-G, and C-F, are provided in the following figures along with the critical loads. 

The modal identification for the S-S FSM-like boundary conditions has been studied 

in [55] though different other mode definitions (ST/O) are used. In [56], the other modes 

O are the null space of GDL space with respect to elastic stiffness matrix Ke while the 

other modes ST here are defined more directly from the shear and transverse extensions 

of all the strips (See further in Section 3.4.3). As shown, other modes contributions are 

negligible by ST definition. This is consistent with the conclusion drawn by the authors 

in [52]. 

The results, in terms of participation of modes and their errors, are consistent with 

those in [56]. The cFSM approximations are excellent and with small errors for most 

modes. The the participation results are also in accordance with engineering expectations. 

Dominant G, D, and L modes can be easily found for the case studied here. The higher 

modes with significant errors (e.g., modes #45, #47, #49 and #50 in S-S in Figure 4-9) 
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are due to the lack of larger longitudinal terms in the base functions to account for local 

buckling with short half-wavelengths. Including larger longitudinal terms will remove (or 

significantly reduce) this error as illustrated for the case of FSM-like S-S boundary 

conditions in Table 4-1. The errors are reduced to negligibly small if the cFSM base 

functions include several higher longitudinal terms, and the participations are now more 

in accordance with engineering expectations. In particular, for the 47
th

 mode, this is a 

local buckling dominant mode with some contributions of distortional buckling as 

correctly predicted when including higher longitudinal terms in the base functions as 

given in Table 4-1. 
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Figure 4-4 Critical loads, participations, and identification error of FE solution of FSM-

like S-S boundary conditions 
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Figure 4-5 Critical loads, participations, and identification error of FE solution of FSM-

like C-C boundary conditions 
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Figure 4-6 Critical loads, participations, and identification error of FE solution of FSM-

like S-C boundary conditions 
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Figure 4-7 Critical loads, participations, and identification error of FE solution of FSM-

like C-G boundary conditions 
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Figure 4-8 Critical loads, participations, and identification error of FE solution of FSM-

like C-F boundary conditions 

    

(a) Mode 45
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 (b) Mode 47
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 (c) Mode 49
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Figure 4-9 Higher mode shapes of FE solution of FSM-like S-S boundary 
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Table 4-1 Participations and errors of FE solution of FSM-like S-S boundary conditions 

by base functions with different longitudinal terms 

G (%) D (%) L (%) ST (%) Error (%) G (%) D (%) L (%) ST (%) Error (%)

44 0.9 7.8 90.7 0.6 4.7 0.9 7.7 89.2 2.2 1.1

45 2.1 35.6 61.8 0.5 99.6 0.8 4.1 92.8 2.4 1.6

46 50.9 47.7 1.2 0.2 0.5 48.8 49.1 1.3 0.8 0.5

47 8.5 69.5 21.8 0.2 93.7 3.0 24.1 71.0 1.8 1.5

48 10.0 73.1 16.7 0.2 0.8 9.9 72.8 16.7 0.5 0.6

49 2.1 37.1 60.3 0.5 99.9 0.8 2.8 94.0 2.5 2.4

50 10.8 68.1 20.9 0.2 97.9 2.5 15.1 80.2 2.1 2.3

40 longitudinal terms in base functions 46 longitudinal terms in base functions
Mode #

 

In general, adding more longitudinal terms in the base functions will reduce the 

errors. However, matrix singularity may be introduced if too many longitudinal terms are 

included and artificially high ST mode participation is then observed. To avoid this, one 

can either exclude ST base vectors, since ST contribution is negligible; or restrain the 

longitudinal terms so that smallest half-wavelength is at least 2 times the element size in 

the longitudinal direction. 

For selected boundary condition cases, C-C and C-F, the FE deformed shapes and 

cFSM approximated shapes are presented in Figure 4-10 for selected local, distortional, 

and global buckling modes as determined from identification results. As can be seen, the 

cFSM approximated shapes are almost identical to the FE deformed shapes.   
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Figure 4-10 FEM deformed shapes compared with identified mode shapes from cFSM for 

some selected modes (add C-F #3) 

4.4.2.2 Comparison to FSM 

Since the boundary conditions of the FE models are equivalent to those implied by the 

FSM longitudinal shape functions (note, the boundary conditions can be only matched to 

certain extent and not exactly identical), the buckling solutions can potentially be 

compared with the same loading. However, exact match in the order of higher buckling 

modes is not possible due to inherent difference between the FSM and FEM models and 

the different eigen-mode extraction methods. Thus, the comparisons are limited to those 

modes that are distinct local, distortional, and global buckling (characteristic modes), and 

these modes are usually the 1
st
/lowest modes in their kind. The selection of the modes is 

based on observation, selection of reasonably high modal participation and also mode 
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shape. Automating this process is an important topic of future research. The comparisons 

between the FEM solution and the FSM solution, in terms of the participations and 

critical loads for the characteristic buckling modes, are shown in Table 4-2. First, modal 

identification of FEM and FSM solutions provides close participation prediction for all 

the boundary cases. Second, for the long member studied here, critical loads of local and 

distortional buckling modes are almost the same. The differences in terms of critical 

loads between FEM and FSM are small. For critical loads of global and distortional 

buckling, the differences are negligible. However, FEM models predict critical loads 5% 

higher than FSM for the local buckling mode.  

Table 4-2 Participations and critical loads of FEM and FSM solutions 

G (%) D (%) L (%) ST (%) Pcr (kN) G (%) D (%) L (%) ST (%) Pcr (kN)

G #1 99.4 0.6 0.0 0.0 60.4 99.4 0.6 0.0 0.0 60.6
D #3 1.4 95.5 3.1 0.1 160.3 1.3 95.3 3.3 0.1 159.5
L #9 0.9 10.3 88.4 0.5 201.5 0.9 6.9 91.8 0.5 191.0
G #7 90.3 9.4 0.2 0.1 201.6 88.0 11.5 0.3 0.1 201.7
D #1 2.5 92.4 5.0 0.1 163.7 2.2 92.3 5.4 0.1 162.3
L #5 1.0 10.0 88.5 0.5 201.5 0.9 7.7 91.0 0.5 191.3
G #1 96.4 3.4 0.1 0.2 112.2 95.3 4.4 0.2 0.1 113.7
D #2 1.8 94.0 4.0 0.2 159.1 1.6 93.9 4.4 0.1 157.9
L #8 1.1 9.9 88.5 0.5 201.5 0.9 12.4 86.3 0.5 191.1
G #1 99.6 0.1 0.3 0.0 22.0 99.7 0.1 0.2 0.0 22.1
D #7 7.4 87.0 5.6 0.1 163.2 6.0 86.2 7.7 0.1 164.1
L #11 0.8 18.2 80.8 0.3 201.5 3.9 12.7 82.9 0.5 191.3
G #1 99.3 0.7 0.0 0.0 60.6 99.1 0.8 0.0 0.0 60.7
D #3 2.3 92.5 5.0 0.1 163.7 3.2 91.3 5.4 0.1 163.2
L #7 0.9 10.0 88.6 0.5 201.5 0.9 9.4 89.3 0.5 191.1

C-C

S-C

C-F

C-G

Boundary 

case

Dominant 

mode

Mode 

number

FEM solution FSM solution

S-S

 

4.4.3 Generalized base function 

The associated base functions have been demonstrated in the previous section to be 

capable of identifying the buckling modes of FEM solutions with so-called FSM-like 

boundary conditions. However, in reality, for instance in a frame, the boundary 

conditions of a member may hardly be idealized as any of those defined in FSM. In most 

circumstances, the member‟s end boundary conditions should be treated as partially rigid 

instead of assuming free to move (no rigidity), simply-supported (only free to rotate) or 
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fixed (no translational and rotational move).  In some complex systems, the influences of 

the sheathing or cladding can result in very different boundary condition scenarios than 

those idealized in FSM. Depending on connection details, the boundary conditions at the 

ends can even be mixed inside the cross section. Obviously, it is impossible to have 

associated base functions for each practical situation. Thus, it is advisable to find a set (or 

a group) of base functions that handle not only the idealized FSM-like boundary 

conditions but also the more general boundary conditions aforementioned, i.e., 

generalized base functions.  

4.4.3.1 Incapability of associated base function 

Before the generalized base function is proposed, let us examine a single set of the 

associated base function. The associated base function for S-S provides a fundamental 

set because of the orthogonality property of the longitudinal shape functions. The 

associated base function for S-S has been used to perform modal identification for FSM-

like boundary conditions in the above section. The modal identification results are shown 

in Figure 4-11 - Figure 4-14 for FSM-like boundary conditions other than S-S by using S-

S base functions in cFSM. The critical loads associated with each mode are not shown. 

For FSM-like C-C and S-C boundary conditions, S-S base function is able to provide 

excellent identification results as demonstrated in Figure 4-11 and Figure 4-12 with 

negligible errors for most of the modes. Similar to identification results by the associated 

base functions, some of the higher modes need larger longitudinal terms to capture the 

smaller half-wavelength local buckling.  
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Figure 4-11 Participations and 

identification error of FE solution of FSM-

like C-C by S-S cFSM base function 

Figure 4-12 Participations and 

identification error of FE solution of FSM-

like S-C by S-S cFSM base function 

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85

G         D        L        ST        ,%   Error, %Mode 

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85

 

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85

G         D        L        ST        ,%   Error, %Mode 

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85

 
Figure 4-13 Participations, and 

identification error of FE solution of FSM-

like C-G by S-S cFSM base function 

Figure 4-14 Participations and 

identification error of FE solution of FSM-

like C-F by S-S cFSM base function 
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However, the S-S cFSM base function fails to correctly identify many of the 

buckling modes for C-G and C-F boundary conditions. Many of the modes give relatively 

large errors, though several of them can be attributed to lack of higher longitudinal terms 

to account for the smaller half-wavelength local buckling. Excepting those, the rest with 

large errors have a common feature: the end of the buckling mode has translational 

displacements (guided or free), which the S-S base function, having no translation 

displacements at both ends, cannot capture. For instances, 1
st
 mode in C-G and C-F as 

shown in Figure 4-2. 

In addition, similar modal identification can be performed by using C-F base 

function for all the other FSM-like boundary conditions. Although the results are not 

shown here, it is found that C-F base function is capable of appropriately identifying the 

buckling modes for C-G, and even C-S and C-C but not for S-S.  

It is worth noting that the discussion above is based on the predicted errors. The 

approximated participations are also consistent if the S-S or C-F base function is capable 

of modal identification for other boundary conditions (e.g., S-S for C-C and C-S, C-F for 

C-G, C-S, and C-C) although slight differences are observed. More detailed comparison 

will be discussed, in the context of the proposed generalized base function, in the 

following sections. 

4.4.3.2 Proposed generalized base function 

A generalized set of base functions can be defined in various ways. Since the S-S 

base function has been proven to effectively capture modal participations of buckling 

modes without translational movements at the ends, adding base vectors to this base 

function which are capable of identifying end translational movements could potentially 
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resolve this issue. Hence, a useful set is proposed as follows: augment the full set of S-S 

base functions with the fundamental C-F&F-C base functions added, where fundamental 

means the G, D and L base functions with one single longitudinal term m=1. The 

longitudinal shape functions for S-S and C-F boundary conditions are expressed as 

follows: 

S-S:  aymY m /sin][     C-F:  aymY m /)2/1(cos1][   (4-11)
 

C-F and F-C are symmetric pairs that enable translational movements at either end of 

the member. The proposed generalized base functions are the combination of S-S 

functions with several longitudinal terms and the fundamental C-F and F-C base 

functions with one (m=1) longitudinal term. A direct illustration of this combination for 

the longitudinal field is shown in Figure 4-15. 

+
(a) (b)

 
Figure 4-15 Longitudinal field diagram: (a) C-F&F-C m=1; (b) S-S m=1,2,…,10 

Note, the ST/O base functions in the fundamental C-F&F-C base functions are not 

included in the generalized base functions. Numerical studies show if ST/O base 

functions in C-F and F-C for the m=1 longitudinal term are included, participations are 

predicted with large (artificial) ST contributions compared to participations of the 

associated base function. If only one (either from C-F or from F-C) set is included, the ST 

participation is in the expected range.  It seems the similarities of the base vectors of a 

pair (C-F&F-C), especially the ST base vectors, are too great even with only m=1 

longitudinal term, which may numerically result in higher ST participation. Therefore, ST 

base vectors are not included in the base functions, at least for one of them. In fact, if 
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both of the ST base vector in C-F and F-C for m=1 longitudinal term are ignored the 

solution provides almost the same ST participation compared to ignoring only one of 

them. Thus, for computational efficiency, both ST/O of C-F&F-C m=1 terms are not 

included into the generalized base functions. As will be discussed later, since the ST 

participation is negligible for most cases, all the ST base vectors in the generalized base 

function can be excluded to save computational time. (Note, ST contributions are 

generally small in cold-formed steel since shear deformations are negligible. For other 

materials, thicker member, etc., ST participation can increase.) 

Figure 4-16 illustrates selected S-S, C-F and F-C base functions with one 

longitudinal term. The first global, distortional, and local modes are presented for the 

member defined in the previous Section (however, the length has been scaled down). 

Differences are apparent, especially at the ends. 

         

         
S-S,G1 C-F,G1 F-C,G1 S-S, D1 C-F,D1 F-C,D1 S-S, L1 C-F,L1 F-C,L1 

Figure 4-16 S-S, C-F, and F-C of m=1, G1, D1, L1 
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4.4.3.3 Modal identification 

Modal identification is performed for the FSM-like boundary conditions listed in 

Section 4.4 by using the proposed generalized base functions. The longitudinal terms in 

cFSM base functions of S-S are 40 (from 1 to 40) in total with the fundamental base 

functions of C-F&F-C pair with the m=1 longitudinal term only. The participations for 

FSM-like S-S are the same as those identified with the associated base functions. For 

boundary conditions other than FSM-like S-S, the modal identifications are provided in 

Figure 4-17 through Figure 4-20. The only difference is that the critical loads are not 

provided.   

As far as the identification error is concerned, the errors for generalized base 

functions are in the same level as those using the associated base functions. This 

indicates the applicability of the generalized base functions to modal identification of 

general boundary conditions, at least from one aspect. Moreover, the indication of the 

participation results is also in accordance with engineering expectations. This can be 

confirmed by comparing the modal identification participations with the selected 

buckling modes of the FEM solutions as shown in Figure 4-2.  
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Figure 4-17 Participations and 

identification error of FE solution of FSM-

like C-C by generalized base function 

Figure 4-18 Participations and 

identification error of FE solution of FSM-

like S-C by generalized base function 

G         D        L        ST        ,%   Error, %Mode 

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85
#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85

 

G         D        L        ST        ,%   Error, %Mode 

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85
#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80 90 100 5 25 45 65 85

 
Figure 4-19 Participations, and 

identification error of FE solution of FSM-

like C-G by generalized base function 

Figure 4-20 Participations and 

identification error of FE solution of FSM-

like C-F by generalized base function 
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4.4.4 Comparison of participations between associated and generalized base 

functions 

Similar to modal identification in the FSM solution, participations of buckling 

modes are sensitive to the choice of basis and normalization of the base vectors.  For 

FEM modal identification, all the sensitivities formed in FSM modal identification still 

exist in FEM modal identification. In addition, the generalized base functions that are 

built up from the base functions of cFSM of two boundary conditions (S-S, C-F&F-C) 

add one more complexity to the sensitivity.  

For the member studied with the FSM-like boundary conditions, the participations 

given by the associated base functions are deemed to provide the most reliable results. 

The generalized base functions provide an approximated participation. Though modal 

identification seems reasonable, as shown in section 4.4.3.3, direct comparisons with 

those by associated base functions are needed to provide the verification of this 

approximation. The full comparisons of participations for FEM solutions of C-C and C-F 

boundary conditions are given in Table 4-3. The relative difference of participations and 

errors predicted by generalized base functions to those by associated base functions are 

provided for the first 40 modes. Note, the first 40 modes usually provide enough 

information to find the characteristic (G, D, and L) buckling modes. At the same time, 

this can exclude the higher modes with large identification errors, e.g., 46
th

 mode. 
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Table 4-3 Modal identification differences by generalized base functions relative to those 

by associated base functions for C-C 

Mode # ΔG (%) ΔD (%) ΔL (%) ΔST (%) ΔError (%) Mode # ΔG (%) ΔD (%) ΔL (%) ΔST (%) ΔError (%)

1 2.2 -1.3 -1.0 0.2 0.0 21 12.1 5.3 -17.9 0.5 0.4
2 0.1 1.0 -1.2 0.2 0.0 22 3.8 17.1 -21.9 0.9 1.2
3 15.2 -11.6 -3.8 0.2 0.0 23 0.0 5.8 -7.0 1.1 1.2
4 0.8 0.5 -1.5 0.2 0.0 24 0.8 7.8 -9.5 1.0 0.9
5 0.1 -2.3 0.9 1.4 0.0 25 9.6 7.7 -18.1 0.8 2.6
6 0.0 -2.0 0.6 1.4 0.2 26 1.3 -5.6 3.6 0.7 0.0
7 2.6 -2.6 -0.1 0.1 0.0 27 5.1 11.8 -17.7 0.8 0.3
8 0.2 -5.1 3.7 1.3 -0.1 28 1.8 8.4 -11.0 0.8 3.3
9 2.4 -1.0 -2.7 1.4 0.7 29 5.6 -2.4 -3.4 0.3 -0.1

10 0.9 -1.4 -0.8 1.3 -0.4 30 0.2 15.0 -16.2 1.0 0.1
11 0.1 -0.1 -1.4 1.3 1.0 31 6.3 5.2 -11.9 0.5 1.5
12 1.3 4.6 -6.5 0.5 -0.1 32 -1.0 0.3 -0.4 1.2 0.0
13 5.6 -0.9 -6.0 1.3 1.7 33 -2.1 1.3 -0.4 1.2 0.0
14 1.6 -1.6 -0.3 0.3 0.0 34 7.1 12.1 -19.3 0.1 0.1
15 0.2 0.4 -1.9 1.3 1.9 35 2.4 7.1 -10.3 0.8 5.6
16 4.5 2.8 -8.4 1.0 -0.7 36 10.0 11.0 -21.3 0.2 4.3
17 12.7 8.7 -22.0 0.6 1.7 37 3.3 4.0 -7.9 0.6 5.0
18 0.5 7.5 -9.0 1.0 -0.3 38 5.3 -5.3 -1.0 1.0 0.0
19 14.4 -9.4 -5.3 0.2 0.0 39 0.1 -0.6 -0.8 1.4 0.0
20 0.2 2.4 -4.0 1.3 2.0 40 13.8 -0.6 -13.4 0.2 11.8

Statistical summary:

ΔG (%) ΔD (%) ΔL (%) ΔST (%) ΔError (%)
Mean: 3.6 1.4 -5.8 0.8 1.1

Min: -2.1 -11.6 -22.0 0.1 -0.7
Max: 15.2 15.0 3.7 1.4 11.8  

 

Table 4-4 Modal identification differences by generalized base functions relative to those 

by associated base functions for C-F 

Mode # ΔG (%) ΔD (%) ΔL (%) ΔST (%) ΔError (%) Mode # ΔG (%) ΔD (%) ΔL (%) ΔST (%) ΔError (%)

1 0.0 0.0 0.0 0.0 0.0 21 5.8 -1.5 -4.9 0.5 0.3
2 1.5 -1.1 -0.4 0.0 0.0 22 4.8 -3.1 -1.9 0.2 0.0
3 8.4 -7.1 -1.4 0.0 0.0 23 4.5 -1.4 -3.6 0.6 0.4
4 4.5 -4.3 -0.3 0.1 0.0 24 2.2 -0.6 -2.0 0.3 0.0
5 4.8 -3.3 -1.6 0.1 -0.1 25 2.3 0.7 -3.6 0.6 -0.5
6 1.3 -1.4 -0.1 0.2 0.0 26 3.7 0.5 -4.8 0.7 1.3
7 4.6 -4.7 -0.1 0.2 0.0 27 4.5 -0.6 -4.6 0.7 0.9
8 3.1 -3.6 0.3 0.2 0.0 28 6.9 -2.0 -5.6 0.7 0.2
9 7.8 -7.8 -0.2 0.2 0.0 29 4.6 -2.9 -2.0 0.3 -0.1

10 5.5 -5.3 -0.4 0.2 0.0 30 4.9 -1.1 -4.3 0.6 1.5
11 0.3 1.4 -3.0 1.4 0.1 31 7.3 -4.4 -3.3 0.4 -0.1
12 1.6 0.5 -3.5 1.4 -0.1 32 6.9 -4.3 -3.1 0.6 0.5
13 2.2 1.5 -4.6 1.0 0.3 33 7.5 -4.5 -3.6 0.6 0.5
14 1.9 1.3 -4.4 1.2 -0.1 34 9.4 -5.8 -4.3 0.7 0.8
15 2.1 0.8 -3.7 0.7 0.2 35 3.0 -1.7 -2.2 1.0 1.0
16 1.9 0.8 -3.5 0.9 -0.1 36 3.7 -1.7 -2.9 0.9 0.3
17 5.0 -3.5 -1.8 0.3 0.1 37 14.0 -13.1 -1.2 0.3 0.0
18 4.2 -1.3 -3.3 0.4 -0.1 38 22.6 -20.7 -2.2 0.3 0.0
19 6.0 -4.0 -2.2 0.3 0.0 39 7.8 -5.9 -2.2 0.3 0.6
20 6.1 -2.3 -4.4 0.6 0.0 40 17.2 -16.8 -0.7 0.3 0.0

Statistical summary:

ΔG (%) ΔD (%) ΔL (%) ΔST (%) ΔError (%)
Mean: 5.6 -3.7 -2.5 0.5 0.2

Min: 0.0 -20.7 -5.6 0.0 -0.1
Max: 22.6 1.5 0.3 1.4 1.5  
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To begin with, both base functions are capable of resolving identification error to a 

practically negligible level (see Figure 4-5, Figure 4-8, Figure 4-17 and Figure 4-20). 

Next, the differences in terms of the participations are practically small for most modes, 

especially the first 30 modes. This is especially true for distinct modes (e.g., mode #1 

distortional, #5 local, #7 global in Figure 4-17 for C-C). Further, from an average point of 

view, the differences are practically small for the first 40 modes, as summarized in Table 

4-3 and Table 4-4. Hence, it can be safely concluded that the participation results are in 

good agreement.  

However, differences do exist, even significant differences for some modes are 

observed in Table 4-3 and Table 4-4. Two observations can be drawn from the 

comparison tables:  

First, the generalized base functions in general tend to predict more G contributions 

than the associated base functions and rarely much higher (10 to 20%) than expected. 

This might be due to the difference of the warping distributions at the ends in generalized 

base functions and the associated base functions (see Chapter 3 for definition of warping 

distributions related to GD space). Fundamental base functions with warping free end(s) 

are forced to adjust to more G contributions (sometimes also D) for the warping fixed 

end(s) (e.g., C-C in Table 4-3) in the participations. However, this usually does not affect 

the modal identification for suitably predicting the dominance of the buckling mode, e.g., 

modal identification by generalized base functions of the 3
rd

 mode of C-C still correctly 

captures the distortional buckling dominance of the mode (with 77% D contribution) 

which is the same as that by associated base functions (with 88% D contribution) 
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although larger differences are observed between the two base functions as shown in 

Table 4-3.  

Second, large differences usually exist in modes that are indistinct, or in other words, 

highly coupled modes; though some exceptions exist. For these highly coupled modes, 

since the differences of the predicted participations could be big, different base functions 

may indicate a change in predicted dominance for certain buckling modes, such as the 

21
st
 mode of C-C; however, this is rare. In addition, coupled modes may have 

complicated post-buckling reserve and reduced ultimate capacity, that should be treated 

more carefully.   

It is worth noting that neither the associated or generalized base functions are 

“correct”. Even though FEM solutions of the FSM-like boundary conditions identified by 

their associated base functions in cFSM are thought to be conceptually correct at least in 

the sense of handling the boundary conditions. However, the FEM solution in general can 

capture more localized modes than FSM even with the same boundary conditions. In 

addition, most of the shell elements employed are based on Mindlin plate theory 

accounting for transverse shear (the FSM solutions do not) that could make a difference 

in buckling analysis for thicker members. Therefore, as in FSM, there are sensitivities to 

basis and normalization, the base function itself can be possibly treated as an additional 

sensitivity for FE modal identification. 

Moreover, in elastic buckling analysis, we are greatly interested in characteristic 

buckling modes (i.e., global, distortional, and local). A comparison of the participations 

by the generalized base functions with the associated base functions are given in Table 

4-5 for all the FSM-like boundary conditions. The differences are small for these 
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important modes, which further validates the applicability of the generalized base 

functions. 

 

Table 4-5 Participations of FEM solution by associated and generalized base functions 

G (%) D (%) L (%) ST (%) G (%) D (%) L (%) ST (%)

G #1 99.4 0.6 0.0 0.0 99.4 0.6 0.0 0.0
D #3 1.4 95.5 3.1 0.1 1.4 95.5 3.1 0.1
L #9 0.9 10.3 88.4 0.5 0.9 10.3 88.4 0.5
G #7 90.3 9.4 0.2 0.1 93.4 6.4 0.1 0.1
D #1 2.5 92.4 5.0 0.1 4.7 91.3 3.9 0.1
L #5 1.0 10.0 88.5 0.5 1.0 7.8 90.7 0.5
G #1 96.4 3.4 0.1 0.2 97.9 2.1 0.0 0.0
D #2 1.8 94.0 4.0 0.2 2.0 94.1 3.8 0.1
L #8 1.1 9.9 88.5 0.5 1.2 7.6 90.7 0.5
G #1 99.6 0.1 0.3 0.0 99.7 0.1 0.2 0.0
D #7 7.4 87.0 5.6 0.1 11.9 82.3 5.6 0.1
L #11 0.8 18.2 80.8 0.3 1.1 19.8 78.7 0.4
G #1 99.3 0.7 0.0 0.0 99.6 0.4 0.0 0.0
D #3 2.3 92.5 5.0 0.1 4.7 91.3 3.9 0.1
L #7 0.9 10.0 88.6 0.5 1.0 7.8 90.7 0.5

C-F

C-G

Mode 

number

FEM solution (Assoicated) FEM solution (Generalized)

S-S

C-C

S-C

Boundary 

case

Dominant 

mode

 

In summary, the generalized base functions are a suitable substitute for the 

associated base function for FSM-like boundary conditions. In fact, it is the only choice 

for more complex boundary conditions where no associated base functions are available. 

4.5  Numerical studies: arbitrary boundary conditions 

The proposed generalized base functions are capable of performing modal 

identification for FEM models with arbitrary boundary conditions. To demonstrate the 

capability of the generalized base functions, two sets of boundary conditions are 

considered for numerical illustration: 1) semi-rigid end boundary conditions; and 2) 

mixed end boundary conditions. 
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4.5.1 Semi-rigid end boundary conditions 

In a real frame, the boundary conditions of a column or beam are in general not 

actually simply-supported or clamped but highly dependent on the connection detailing 

and bracing. Therefore, both translational and rotational deformations at the ends are 

influenced by the stiffness of the connections and the overall frame system. For 

individual members in a frame, the boundary conditions are treated as semi-rigid 

boundary conditions. Practically, appropriate rotational/translational springs are 

employed to simulate the semi-rigid conditions. Three simplified cases are illustrated in 

Figure 7 to represent the possible scenarios of semi-rigid boundary conditions.  

Kφ1

Kφ2

 

Kφ

KxKz

 

Kφ2

Kx2Kz2

Kφ1

Kx1Kz1

 

(a) Case I (b) Case II (c) Case III 

Figure 4-21 Semi-rigid boundary condition cases 

Figure 7(a) shows the semi-rigid boundary conditions between S-S and C-C with 

rotational springs at ends, Figure 7(b) shows the case between C-F and C-C with both 

translational and rotational springs at one end, and Figure 7(c) shows a more generalized 

semi-rigid boundary condition case where both ends are capable of deforming translation 

and rotation. 
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4.5.1.1 Case I 

To investigate the applicability of the generalized base functions for semi-rigid case 

I, a numerical example is studied for a semi-rigid column that is warping free at one end 

and fixed at other end. The section is the same cross section as used previously (Figure 

4-1) with a column length of 2000 mm. The stiffness of the rotational springs are all 300 

N-m/rad on each node at both ends (locally restrained rotational springs). The modal 

identification results by generalized base functions (40 longitudinal terms in S-S) are 

presented in Figure 4-22. 

Small errors are found for most of the modes except several higher modes that need 

larger longitudinal terms to alleviate the error due to local buckling at small half-

wavelength as explained in Section 4.4.2.1. The participation results are also in 

accordance with engineering expectations, found by examining the buckling modes. 

In this semi-rigid boundary case, the warping is fixed at one end and free at the other 

end, which is similar to S-C boundary conditions. For thin-walled members, warping 

plays a central role in the member‟s behavior. The effect of rotational springs is less 

important, at least for columns.  Therefore, although the local restrained rotational 

springs (at each node) have been studied, conclusions can be drawn for globally 

restrained rotational springs (at the end as a whole). The proposed modal identification 

method has no problems handling both cases. 
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Figure 4-22 Modal identification of semi-rigid case I 

4.5.1.2Case II 

For this case, two options are studied to illustrate the proposed modal identification 

method. The two options depend on where the springs are located at the end of the cross 

section. 

(a)  Partially restrained at the end as a whole 

The boundary conditions and springs are shown in Figure 4-23. The cross section is 

again that of Figure 4-1 with a length of 2000 mm. The stiffnesses of the springs are: 

Kx=20 N/mm, Kz=10 N/mm, Kφx=100 N-m/rad, Kφz=100 N-m/rad, and Kφy=100 N-m/rad. 

The generalized base functions (40 longitudinal terms in S-S) are used in identifying the 

modal participations. Participations are shown in Figure 4-24 with critical loads. Errors 

are small and participations match engineering expectations, as shown in Figure 4-25.  
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Figure 4-23 Boundary conditions and springs in FEM model 
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Figure 4-24 Modal identification of semi-rigid case II - partially restrained at the end as a 

whole 
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Figure 4-25 FEM and approximated mode shapes for selected modes 

(b) Partially restrained ONLY at corners (more general) 

The boundary conditions and springs are shown in Figure 4-26. The cross section is 

again that of Figure 4-1 with a length of 2000 mm. The rotational springs are assumed to 

be zero in this case, and the translation spring stiffnesses at each node of the four corners 

are ¼ of the translational spring stiffnesses in the preceding (case a). Modal identification 

is performed by using the generalized base functions (with 40 longitudinal terms in S-S) 

and participations and errors are provided in Figure 4-27, along with the critical loads. 

Again, the generalized base functions work well even for this more complicated semi-

rigid boundary conditions. Localized mode shapes are found because of the discrete 

spring constraints at the end, as shown in Figure 4-29, along with the cFSM 

approximated shapes. 
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Figure 4-26 Boundary conditions and springs in FEM model 
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Figure 4-27 Modal identification of semi-rigid case II - partially restrained at four corners 



153 

 

          

FEM Appro. FEM Appro. FEM Appro. FEM Appro. FEM Appro. 

1
st
 mode 3

rd
 mode 7

th
 mode 11

th
 mode 15

th
 mode 

Figure 4-28 FEM and approximated mode shapes for selected modes 

4.5.1.3 Semi-rigid Case III 

For this case, the boundary conditions and springs are shown in Figure 4-29.  Note, 

the system may be kinematically unstable if there are not enough springs or the 

stiffnesses of the springs are too small. The column length is 2000 mm and again the 

cross section is that of Figure 4-1. Uniform compression loading is applied as nodal 

forces at End1. Modal identification is performed using generalized base functions (with 

40 longitudinal terms in S-S). Participations and errors are provided in Figure 4-27 along 

with the critical loads. Buckling mode shapes that have translational movements at both 

ends (1
st
 mode) are found, as shown in Figure 4-29 along with the cFSM approximated 

shapes. Again, the generalized base functions work well for this semi-rigid boundary 

conditions. 
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Figure 4-29 Boundary conditions and springs information in FEM model 
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Figure 4-30 Modal identification of semi-rigid case III  
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Figure 4-31 FEM and approximated mode shapes for selected modes 

4.5.2 Mixed end boundary conditions 

Thin-walled cross sections may be restrained differently on each flat plate at the 

ends, thus resulting in so-called mixed boundary conditions. The discontinuity of the 

boundary conditions at the junctions generates different stress distributions, which in 

return change the buckling behavior of the member.  FSM is not readily able to correctly 

capture the buckling behavior as explained in Section 2.7. On the other hand, for such 

boundary conditions FEM is effective, of course if FEM is employed modal identification 

is still needed for design (at least for the characteristic modes).  

The first thing one should realize when performing the FEM modal identification for 

mixed boundary conditions is that the applied based vectors from “pure” ends (such as, 

S-S, C-F) violate all of the mixed boundary conditions in both the cross section and 

longitudinal direction, thus reducing the numerous errors especially at the ends may not 
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be possible by using these “pure” base vectors (associated).  Hence, the generalized base 

functions are the only choice for modal identification of such boundary conditions. 

As illustrated in Figure 4-32, this type of mixed boundary conditions usually has 

certain nodes at the ends laterally unrestrained.  Now, consider the mixed boundary cases 

in Figure 4-32 for a column (L=1200 mm) with the same cross section as before (Figure 

4-1, Section 4.4). Uniform compression loading is applied at both ends.  

   

(a) Web: S-S; warping 

free 

(b) Flanges and lips: S-

S; warping free 

(c) Flanges and lips: S-

S at one end; Web: 

S-S at other end; 

Warping free 

 

Figure 4-32 Mixed boundary cases 

Participations and errors along with the critical loads are provided in Figure 4-33 - 

Figure 4-35. Buckling mode shapes are shown in Figure 4-29 for selected modes. The 

identification errors for all the buckling modes are negligible. Moreover, the participation 

percentage agrees well with those engineering observation. For example, the 1
st
 mode of 

case b shows localized local buckling at the end with some distortional buckling features 

near the end as well. This is correctly captured by the modal identification, as shown in 

Figure 4-34. Thus, to sum up, the generalized base functions are even able to predict the 

buckling mode with negligible identification errors for mixed boundary conditions. 
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Figure 4-33 Modal identification of mixed boundary case a  
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Figure 4-34 Modal identification of mixed boundary case b  
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Figure 4-35 Modal identification of mixed boundary case c  
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Figure 4-36 FEM mode shapes for selected modes 

4.6 Numerical studies: partially restrained members 

In a purlin-beam system or a column with sheathing, the contribution of the purlin or 

wall to the member behavior can be simplified by springs, i.e., mainly one rotational 

spring and two translational springs. Usually global buckling is greatly restrained by the 
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spring stiffnesses while distortional buckling is significantly influenced by the springs as 

well. The proposed modal identification method can handle these kinds of partially 

restrained systems. Here a simply-supported beam is modeled with rotational and 

translational springs along the center of the upper flange as shown in Figure 4-37 along 

with the boundary conditions and loading. The length of the beam is 2000 mm under 

major-axis bending and springs are distributed every 200 mm along the length. As shown 

in Figure 4-37, there are three springs at each constrained node, one rotational spring (Kθ) 

and two translational springs (Kx, Kz).  

Kφ

KxKz

middle warping fixed

restrain X, Z, 
warping free

X
Z

Y

restrain X, Z, 
warping free

Discrete springs along the length

 

Figure 4-37 Partially restrained simply supported beam 

Sheathing or walls interpreted as spring stiffnesses have been studied in terms of 

their influence on the member‟s buckling behaviors in the literature [57-61]. 

Experimental tests determining the spring stiffness of the walls were conducted by Vieira 

et al [60].  In this section, the elastic buckling behavior is studied again in terms of the 

modal identification for different spring cases. Of course, the first goal is to demonstrate 

that the proposed modal identification method can handle the partially restrained member; 

then interesting mode transitions by changing the stiffness of the restraints (springs) can 

be observed from the participations. Three cases are considered: 1) Case 1: no springs, in 
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other words, no restraints on the beam; 2) Case 2: weak springs where Kθ is equal to 5.45 

N*mm/rad and Kx and Kz are equal to 18.2 N/mm at each node; 3) Case 3: practical level 

springs where Kθ is equal to 54500 N*mm/rad and Kx and Kz are equal to 90.9 N/mm at 

each node. (See [59] for more information on spring stiffness.) 

Modal identification has been performed for the three beam cases by using the 

generalized base functions (with 50 longitudinal terms in S-S). Note, for these cases, 

where no translational movements exist at the ends, and even with discrete springs along 

the length, modal identification can be performed by using S-S base functions only as 

well. As demonstrated previously (Section 4.4.4), generalized base functions predict 

consistent participation results as associated base functions, particularly for S-S there is 

no difference. Since a unified set of base functions that applies to any arbitrary boundary 

conditions is the ultimate goal, only the results from generalized base functions are 

discussed here. Participations and errors for the first 50 modes are given in Figure 4-38 - 

Figure 4-40 along with the critical moments. 

As far as the performance of the modal identification is concerned, the selected 

examples illustrate the applicability of the method for a restrained member.  The errors 

are small, except for several higher modes that include local buckling with smaller half-

wavelengths (see Section 4.4.2). It is noticeable that with the restraints of the springs, 

these local buckling modes with smaller half-wavelengths are more present in the higher 

modes, e.g., as shown in Figure 4-40. Detailed examination of the participations shows 

excellent agreement with engineering expectations (as provided in Figure 4-41 for 

selected buckling modes). 
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Figure 4-38 Modal identification of beam without springs 
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Figure 4-39 Modal identification of beam with weak springs 
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Figure 4-40 Modal identification of beam with practical springs 

The characteristic buckling modes can be identified based on the participations, as 

discussed further in Chapter 7, though quantification is still needed. However, based on 

the modal identification results and critical loads, the influence of the springs on the 

buckling behaviors of the beam can still be investigated.  Clearly, global buckling is 

greatly restrained by the springs. Depending on how global buckling is identified, the 

beam may be interpreted as fully restrained against global buckling with the practical 

springs (case 3).  

The distortional buckling mode dominates as the lowest buckling mode in the 

presence of weak springs, which is approximately the 2
nd

 mode for beam without springs. 
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For a beam with practical springs, the 1
st
 mode is still distortional buckling mode, but at a 

higher critical moment.  
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(a) No springs (b) Weak springs (c) Practical springs 

Figure 4-41 Selected buckling modes 

For local buckling, it is commonly thought that because the half-wavelength of local 

buckling is small, springs have less impact on it, as shown in the signature curves by 

FSM in Figure 4-42. However, since this member has lower distortional buckling, large 

D contributions to local buckling (mode #18, #20 in Figure 4-41) exist even in the 

unrestrained beam. With the presence of springs, more DL/GDL interactions are 

observed. Especially in the beam with practical springs, a distinct local buckling mode 

may be hard to observe or identify except at relatively high modes with correspondingly 

high critical moment. 
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Figure 4-42 springs effects on buckling behavior by FSM 

4.7  Numerical studies: unidentical mesh 

In the previous numerical studies, the meshes for FEM and cFSM are identical 

around the cross section. However, in general they do not need to be the same since using 

the FSM shape functions enables the extrapolation of displacements of additional nodes 

in forming the base vectors for the FEM nodes. This is extremely useful in the case where 

the FEM mesh is irregular along the length, e.g., a member with holes. For the same 

member with FSM-like S-S boundary conditions with highly irregular mesh (generated 

from an auto-meshing routine) along the length, the modal identification results are 

provided in Figure 4-43 accordingly. Note, for this specific study, the element (S8R, 

quadratic shell element with reduced integration in ABAQUS) is also different from that 

previously used (S4). The irregularity of the mesh can be observed from the selected 

buckling mode shapes provided in Figure 4-44. 
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The modal identification (Figure 4-43) shows results consistent with those in Section 

4.4, with small errors for most modes. Further, when investigating the buckling mode 

shapes as shown in Figure 4-44 the indication of the participation demonstrates 

agreement with engineering expectation. Therefore, extrapolation of the cFSM base 

function through FSM shape functions is validated to approximate the FEM model with 

an irregular mesh. Essentially, this paves the way towards the application of modal 

identification on more irregular geometry. 
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Figure 4-43 Modal identification of unidentical mesh 
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Figure 4-44 Selected buckling mode shapes of irregular mesh model 

4.8  Numerical studies: member with holes 

Perforations are commonly used in nearly all cold-formed steel applications for 

services and/or bridging, e.g., isolated holes in studs. The presence of perforations 

complicates the buckling behavior of the member. In finite element modeling laborious 

visual investigations of the characteristic buckling modes are much more demanding than 

in member without holes. One apparent barrier is that for members with changes in 

geometry exact match between the cFSM base functions and the developed finite element 

models is impossible. Consequently, extrapolation of the cFSM base functions for modal 

identification is needed, as illustrated in Section 4.7 for an unidentical mesh. Moreover, 

cFSM itself is not capable of capturing the changes of section along the length; thus, 

modal identification using extrapolated base functions from cFSM are an approximation 

for an FE model with perforations. For the same cross section (Figure 4-1), used with 
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rectangular holes in the web, as shown in Figure 4-45, the modal identification of the 

stability solution is presented in Figure 4-46. Note, nodal forces to simulate a column 

member are applied at the ends. 

140

40

Simply supported, 
warping free

Simply supported, 
warping free

Warping fixed
at the middle

 

Figure 4-45 Hole location and size and column boundary conditions (mm) 
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Figure 4-46 Modal identification of column with rectangular holes 
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The modal identification in Figure 4-46 shows small errors for most modes. Further, 

the indication of the participation demonstrates good agreement with engineering 

expectations, when investigating the buckling mode shapes, as shown in Figure 4-47. In 

particular, even with localized deformation shapes around the holes as shown in Figure 

4-47, the proposed modal identification method can capture this deformation with small 

errors.  Moreover, for modes with large global buckling contributions, e.g., the 5
th

 mode 

as shown in Figure 4-47, modal identification also correctly captures this. 
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Figure 4-47 Selected buckling mode shapes for column with holes 

4.9  Summary 

In this chapter, the base vectors from the newly developed constrained finite strip 

method (cFSM) for general end boundary conditions have been utilized for the purposes 

of modal identification of the buckling modes of shell finite element method (FEM) 

eigenbuckling analyses. Associated base vectors, where the cFSM and FEM end 
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boundary conditions correspond, are shown to provide modal identification in agreement 

with existing cFSM implementations, and with traditional visual observation for modal 

identification.  

Generalized base vectors, generated from a subset of the new cFSM base vectors, 

are proposed. The generalized base vectors are intended for arbitrary end boundary 

conditions. Modal identification utilizing generalized base vectors is shown to be in good 

agreement with those utilizing the associated base vectors. Further, numerical examples 

of semi-rigid and mixed end boundary conditions are also provided, and demonstrate the 

applicability of the generalized base vectors to modal identification with arbitrary end 

boundary conditions. In addition, numerical studies on partially restrained beams indicate 

the applicability of modal identification for members with intermediate restraints.  

Exact match of the finite element and finite strip models in terms of meshing is 

illustrated to not be necessary by numerical example. Extrapolation of the cFSM base 

functions is able to provide a close modal identification solution even with irregular FEM 

meshes. This enables the possibility of modal identification on members with geometric 

change along their length such as holes, for which extrapolation is needed and modal 

identification is performed in an approximate way because the geometries in cFSM and 

FEM do not exactly match due to the existence of perforation(s).  Numerical examples on 

modal identification with holes demonstrate the applicability of the method towards 

quantitative classification of buckling modes that are far too laborious to identify by 

traditional visual observation in FE model.  
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Chapter 5 Modal identification for nonlinear FE collapse analysis 

 

 

5.1 Introduction 

The strength of thin-walled members is often governed by its buckling behavior, due 

to its high cross-sectional slenderness. As commonly acknowledged, thin-walled member 

instabilities can be generally categorized as: local (local-plate), distortional, and global 

(Euler) buckling. As currently reflected in design specifications, such as AISI-S100 [4], 

appropriate separation and identification of the buckling modes are necessary, because of 

the different post-buckling strength and interactions between the modes.  

Given the many advances in computation, the Finite Element Method (FEM) 

employing shell finite elements has become more popular in analyzing thin-walled 

structures both for elastic (eigenmode) buckling and nonlinear collapse analyses. FEM‟s 

unique applicability to handle complex geometry and boundary conditions makes it a 

natural choice in many situations. However, FEM itself provides no means of modal 

identification, and instead requires a laborious and completely subjective procedure 

employing visual investigation. 

For elastic buckling analysis, the newly developed constrained finite strip method 

(cFSM) [2-7] provides the ability to decompose buckling modes as well as categorize 

(identify) arbitrary buckling modes (or displacements) into the fundamental deformation 

classes of global (G), distortional (D), local (L), shear and transverse extension (ST) as 
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presented in previous chapter. However, to date, for shell element based nonlinear FEM 

collapse analysis, failure mode identification is still investigated based on subjective, and 

largely visual, engineering observations. (A similar observation is true for experimental 

member testing.) In this chapter, the cFSM based modal identification procedure is 

applied to the nonlinear collapse analysis of shell finite element models with both 

geometric and material nonlinearity. Note, Generalized Beam Theory has been utilized in 

nonlinear elastic analysis for a similar purpose [62]. 

5.2  Differences compared to elastic buckling analysis 

5.2.1 Eigenbuckling identification 

In standard FEM notation, the eigenbuckling problem may be stated as: 

 (Ke - λKg) φ = 0 (5-1) 

where, Ke is the elastic stiffness, Kg is the geometric stiffness which depends on the 

applied loading, λ is the eigenvalue (load factors), and φ is the eigenmode (buckling 

mode) vector. 

In Chapter 4, efforts towards FEM eigenbuckling identification focused on 

categorizing the buckling mode φ into the four buckling mode classes, G, D, L and ST, in 

terms of participation percentages. This is completed, first by taking the base vectors in R 

of cFSM and interpolating them to all the nodal locations in the FEM displacement field, 

as explained in Section 4.2. The new cFSM base functions written in the FEM degrees of 

freedom are referred to as RFE. Then, a sizeable minimization problem is solved by 

approximating the eigenmode vector φ as a linear combination of the base function in 

RFE.  More details can be found in Section 4.3. 
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The base functions are formed based upon assumed boundary conditions in cFSM. 

The analytically attractive simply supported boundary conditions (S-S) may not be used 

without modification as these base functions cannot handle buckling problems where 

translational movements are allowed at the ends. Generalized base functions are proposed 

in Section 4.4.3 which include the base vector of clamped-free (C-F) and free-clamped 

(F-C) boundary conditions. More specifically, the proposed generalized base functions 

are the combination of S-S functions with several longitudinal terms and the C-F and F-C 

base functions with one (m=1) longitudinal term as shown in Section 4.4.3. These base 

functions are applied in the examples shown subsequently for nonlinear analysis. 

5.2.2 Nonlinear collapse analysis 

The nonlinear collapse analysis problem, in an FEM context, can be expressed as: 

 (Ke + Kg + Kp) d = F (5-2) 

where, Ke is the conventional elastic stiffness matrix, Kg is the geometric stiffness matrix 

and depends upon the current forces applied on the structure, Kp is the plastic reduction 

matrix to account for yielding, d is the displacement vector, and F is the consistent nodal 

forces applied on the structure. Note, different from the eigenbuckling problem, Ke and 

Kg here are formulated upon the deformed shape in each increment step (or iteration) 

when analyzing the nonlinear problem by iterative methods, such as the Newton-Raphson 

or arc-length method.  

For modal identification in the nonlinear collapse analysis the vector to be identified 

is d, the displacement vector, as opposed to φ, although, the same identification 

procedure can be performed on d to categorize the buckling modes of each step during 

the collapse analysis by using the generalized base functions.  
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One note, the base functions from cFSM used to identify the deformation in the 

nonlinear collapse analysis are based on the perfect geometry. However, the deformation 

vectors are normally based on a model of the member with initial geometric 

imperfections. Based on the author‟s studies, adding the imperfection field to the 

deformation vector provides a means to approximately address this geometric 

discrepancy. Consequently, the deformation vector to be identified is actually: 

 did = d + dimp  (5-3) 

where, did is the deformation vector to be identified in terms of G, D, L, and ST, d is the 

deformation vector from Eq. (5-2), and dimp is the imperfection deviating from the perfect 

model.  This is consistent with defining the cFSM base functions on the perfect structure. 

As deformation (d) increase the necessity and relevancy of the imperfection (dimp) 

diminishes 

5.3 Linear elastic static analysis 

Before we get into the details of modal identification for nonlinear FE collapse 

analysis, a more simple case – linear static analysis is considered.  The only difference 

from what has been described in Section 5.2.2 is that there is no geometric (Kg) and 

plasticity reduction (Kp) matrices, and no updating of the elastic stiffness matrix (Ke) is 

necessary for linear elastic static analysis. Modal identification is performed on the 

displacement vector d. In this particular study, a special set of linear elastic static analysis 

is performed.  

According to cFSM, the global and distortional buckling modes can be uniquely 

defined by a corresponding warping distribution. In other words, if the warping 

distribution V is known for a particular buckling mode in GD space, the whole 
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deformation shape of the mode is known by deriving other displacements (i.e., U, W, Ө, 

see Section 2.2) from the mechanical assumption in Table 3-1. This poses an interesting 

question: will the member deform into the corresponding GD mode in equilibrium if a 

warping distribution in GD space is enforced? 

To verify this, a linear elastic static analysis is studied with prescribed warping 

distribution on a lipped channel section (note, dimension and material properties do not 

matter as long as used consistently in the whole analysis, nonetheless, the cross section of 

Figure 4-1 is employed.). Recall, the global buckling modes do not include any cross-

section distortion, as specified by the mechanical criteria of cFSM. Regarding this, the 

global buckling modes correspond to the traditional definition of the global buckling 

modes with rigid-body cross-section displacements, which can be seen as major-axis 

bending, minor-axis bending, and torsion. These three global buckling modes in cFSM 

can be described by three special warping functions corresponding to the longitudinal 

displacements (warping displacement in cFSM definition) resulting from special loads as 

shown in Figure 5-1.  Thus, each of the warping distributions in Figure 5-1 represents a 

corresponding global buckling mode.  

 

(a) major-axis bending (b) minor-axis bending (c) pure torsion  

Figure 5-1 Warping functions of G space 
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According to cFSM, the separation of the distortional buckling space (D space) from 

GD space is conducted mathematically, since there is no direct definition of the 

distortional buckling modes. The physical meaning of individual distortional buckling 

modes is not clear. Currently, a D space is sought by finding a null space of the G space 

within the GD space from the warping functions. Using the same method in cFSM to find 

the null space D, which is the singular value decomposition, there are two buckling 

modes in D space as shown in Figure 5-2. More details of the GD space can be referred 

to in Section 3.4. 

 

       (a) Symmetric distortional         (b) Anti-symmetric distortional 

Figure 5-2 Warping functions of D space 

Note, the absolute magnitude of the warping is not important unless combination of 

warping functions is involved.  To see what the deformation will be by enforcing the 

previously illustrated warping functions, linear elastic static analyses are performed on 

the lipped channel section as shown. The warping distribution along the length can be 

extrapolated as following:  
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where, Y[m] represents the longitudinal shape function , m is the longitudinal term, a is the 

length of the member and μ[m]=mπ. v[m] is the warping function given in Figure 5-1 and 

Figure 5-2 associated with longitudinal term m. For different longitudinal terms, the 

distribution is the same while the absolute magnitude may be varying. 

For G space, only deformed shapes of the major-axis bending from static analysis 

are shown for S-S and C-C boundary conditions. The longitudinal term m used to 

extrapolate the warping distribution along the length is 1 in Eq. (5-4) for both S-S and C-

C. The deformed shapes with displacement magnitude contour are shown in Figure 5-3. 

They are the major-axis bending we commonly see.  

Modal identifications are performed on these two deformed shapes. The 

participation indicates 99.9% percentage of global buckling mode.  

(a) S-S, major-axis bending (b) C-C, major-axis bending

 

Figure 5-3 Deformed shapes of major-axis bending warping functions for S-S and C-C 

Similarly, deformed shapes for the symmetric distortional warping function of 

Figure 5-2(a) are illustrated for S-S and C-C boundary conditions. For S-S, the 

longitudinal terms employed to extrapolate the warping distribution along the length in 

Eq. (5-4) is 6. For C-C, a combined warping function is employed with majority warping 

distribution from longitudinal term m=6 and small contribution from 2, 4, 8, and 10 as 

well, in an attempt to simulate the longitudinal term participation as in Section 2.5. The 
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deformed shapes with displacement magnitude contour are shown in Figure 5-4. With the 

multiple longitudinal terms in warping functions of C-C, the deformed shape develops 

into a coupled distortional buckling mode by multiple half-wave lengths (Note, majority 

of the deformation is still attributed to longitudinal term m=6 as observed.) 

If modal identifications are performed on these two deformed shapes, the 

participations for both indicate 98% percentage of distortional buckling mode 

contribution with local buckling as the rest 2%. Though small noise existed as predicted 

by modal identification, these are still nearly pure distortional buckling modes as 

expected. 

 

(a) S-S, symmetric distortional with longitudinal term m=6 

 

(b) C-C, symmetric distortional with multiple longitudinal terms 

Figure 5-4 Deformed shapes of symmetric distortional warping functions for S-S and C-C 

To sum up, there are two conclusions from modal identification of the linear elastic 

static analysis in this section. First, it can be seen as a verification of the mechanical 

assumption in Table 3-1 about global and distortional buckling. Second, it demonstrates 

the applicability of FE modal identification on general displacement vector d. 

5.4 Modeling parameters for nonlinear collapse analysis 

Shell finite element modeling of thin-walled structures for ultimate strength 

prediction and investigation of collapse behavior necessitates the inclusion of both 
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geometric and material nonlinearity. The solutions of these models are highly sensitive to 

model inputs, such as geometric imperfections, residual stresses, plastic strain, yield 

criteria, material model, boundary conditions, and also the fundamental mechanics, 

particularly with regard to element selection and solution schemes [63]. All the analyses 

performed herein utilize the commercial finite element package ABAQUS [45]. In this 

study, residual stresses and plastic strains are not included in this model. Additional 

model assumptions are discussed in detail as follows.  

5.4.1 Element and Mesh 

Prediction of the peak strength and failure behavior of thin-walled structural 

members requires a fine mesh in nonlinear FEM models to provide reliable results. The 

shell element used here is the S4 shell element from the ABAQUS library of elements 

[45], the S4 is a 4-node linear element (fully integrated). In addition, the element aspect 

ratio is controlled between ½ to 2 to avoid element distortion under large deformations. 

Specifically, for all the channel sections studied in this paper, the mesh of the cross 

section is provided in Section 5.5.1. 

5.4.2 Boundary conditions 

The end boundary conditions simulate local-plate simply supported conditions, 

which imply warping fixity at the member ends. Specifically, all translational degrees of 

freedom are fixed at one end of the model, at the opposite end the transverse translational 

degrees of freedom are fixed, while the longitudinal translational degrees of freedom are 

tied to a single reference node, where the end shortening (loading) is performed. 



180 

 

5.4.3 Material model 

The material is assumed to be homogeneous and isotropic and modeled as elastic-

perfectly plastic (von Mises yield criteria with isotropic hardening) with Young‟s 

modulus E=210,000 MPa, Poisson‟s ratio v=0.3, and a yield stress of 345 MPa. 

5.4.4 Imperfections 

Careful treatment of geometric imperfections is of significant importance in 

modeling cold-formed steel members, because the ultimate strength and post-buckling 

mechanisms are both imperfection sensitive. Both the imperfection distribution and 

magnitude are important. In this study, for modeling convenience, the distribution of the 

imperfection are seeded from the local and/or distortional buckling mode shapes 

generated from a CUFSM analysis [54], and the magnitude is a function of the plate 

thickness. It is worth noting here that if one wants to simulate tests or provide strength 

predictions of cold-formed steel member in a more reliable and accurate manner, the 

distribution and magnitude of imperfections should be more closely tied to measured data 

[63, 64]. 

5.4.5 Solution control 

Nonlinear collapse analysis is sensitive to the solution scheme. Thin-walled 

structures may become unstable when a load reaches its buckling value or when 

nonlinear material accumulates large plastic strain. The instability could be global (such 

as a snap-through of a plate) or local (such as failure of a stiffener). Instability problems 

usually pose convergence difficulties and therefore require the application of special 

nonlinear techniques. Methods, such as displacement control, arc-length method, and 
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artificial damping, are typically potentially appropriate for collapse modeling of cold-

formed steel members. The method employed in this study is the arc-length method 

(modified Riks method [65] in ABAQUS). 

5.5  Modal identification of FEM nonlinear collapse analysis 

5.5.1 Cross-sections under study 

Three cold-formed steel members, as shown in Figure 5-5, are selected to study the 

proposed modal identification method for nonlinear collapse analysis. In Figure 5-5, the 

nodes illustrate the mesh density within the cross-section. All the members are modeled 

as columns under the boundary conditions specified in Section 3.1.1.  Member (a) with a 

length of 600 mm in Figure 5-5 is a local dominant model (first buckling mode is the 

local buckling mode in the eigenbuckling analysis). Member (b) with a length of 1200 

mm in Figure 5-5 is a distortional dominant model. Member (c) with a length of 700 mm 

in Figure 5-5 is a local-distortional interacted model, which means the first FEM 

eigenbuckling mode is a mixed local and distortional buckling mode. The relatively short 

length for each section is intended to exclude global buckling from dominating. 
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Figure 5-5 Dimensions of cross sections (mm) and mesh 

5.5.2 Modal identification: perfectly initial geometry (no initial imperfection) 

Cold-formed steel members have geometric imperfections during manufacturing. 

Thus, perfect geometry (no imperfections) does not exist in reality. However, studying 

the perfect geometry can still provide useful insights about the behavior of cold-formed 

steel members, as is shown herein. For the cross-sections in Figure 5-5, the first 

eigenbuckling mode and full nonlinear collapse models are both analyzed with shell finite 

element analysis.  

While eigenbuckling analysis is based on a linear perturbation, static analysis is 

based on incremental load-deflection response. For modal identification, determining 

which displacements to consider in the identification analysis requires some judgment. 

For example, in this study, the applied load (actually an applied displacement) of column 

end shortening is highly correlated with the fourth global buckling mode (G4) of the 
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cFSM base functions used for modal identification. Similarly, in major-axis bending 

moment the applied deformations are also highly correlated with a global mode cFSM 

base function. In this study, modal identification results both with and without these 

correlated global modes are provided. For perfect initial geometry, modal identification 

results without the end shortening (G4) deformation (i.e., the adjusted participations) are 

summarized in Table 5-1 along with the elastic buckling load and peak load.  

Table 5-1 Participations of eigenmode and nonlinear collapse models 

Model G D L ST Pcr Pn

1
st
 eigenmode 0.4 4.8 94.6 0.1 20.8

at peak 0.7 12.8 85.4 1.1 72.9

at post 0.4 55.9 41.0 2.8

1
st
 eigenmode 6.0 89.2 4.7 0.1 173.4

at peak 0.1 93.8 4.6 1.6 163.8

at post 0.1 82.6 14.8 2.5

1
st
 eigenmode 2.9 38.5 58.1 0.4 283.8

at peak 0.2 50.5 47.1 2.2 296.4

at post 18.4 52.0 27.5 2.1

Participation (%)

Local dominant 

model

Distortional dominant 

model

Local-distortional 

interacted model

Load (kN)

 

Note: at peak refers to the peak of the load-displacement response in a nonlinear collapse analysis           

                        at post refers to collapse mechanisms at force levels less than 80% of peak deformation 

5.5.2.1 Local dominated model 

Modal identification results for the local dominant model (without imperfections) are 

summarized in Table 5-1 and shown throughout the nonlinear collapse analysis in Figure 

5-6(b). If G4 (the end shortening mode) is included in the determination of the 

participations then G modes dominate the response in the pre-buckling regime and have 

significant percentages in the buckling and post-peak regimes (see upper plot of Figure 5-

6(b)). However, if G4 participations are removed, then the eigenmode and peak modal 
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identification results are similar (Table 5-1) and only in the collapse/post-peak range does 

distortional buckling significantly participate. 

This model demonstrates that a local dominant model (as determined by 

eigenanalysis and the fact that elastic local buckling is at 20.8 kN, but ultimate collapse at 

72.9 kN), if properly considered, is indeed local dominant up to the peak strength, but 

even in a local dominant model the final collapse mechanisms may have significant 

contributions from other modes (e.g., distortional). This is consistent with experimental 

observations in [44]. Finally, it is also worth noting the role of the shear and transverse 

extension (ST) modes. Since no imperfection exists in this model the initial deformations 

(primarily associated with localized deformations due to the end boundary conditions) 

have a noticeable ST contribution. However, once the buckling fully initiates the ST 

participations decrease to near zero until the post-peak region.      

5.5.2.2 Distortional dominated model 

Modal identification results for the distortional dominant model (without 

imperfections) are summarized in Table 5-1 and shown throughout the nonlinear collapse 

analysis in Figure 5-7(b). For the adjusted participations (i.e., G4 removed, as shown in 

lower plot of Figure 5-7(b)) the distortional mode participation at peak strength is similar 

to the distortional buckling mode participation in eigenbuckling analysis (see Table 5-1). 

However, while the local dominant model has significant post-buckling, the selected 

distortional dominant model is in the inelastic buckling regime (i.e., with strength of 

163.8 kN and elastic buckling of 173.4 kN). Interestingly, in the collapse regime, local 

buckling participation grows slightly (presumably due to short wavelength localizations 
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in the plastic mechanism) although distortional buckling remains dominant with 

participations near 80%. 

5.5.2.3 Local/distortional interacted model 

Modal identification results for the local-distortional interacted model (without 

imperfections) are summarized in Table 5-1 and shown throughout the nonlinear collapse 

analysis in Figure 5-8(b). While the elastic buckling analysis suggests greater 

participation for the local mode, the collapse analysis reveals dominance of the 

distortional mode (with G4 removed). This is consistent with current understanding that 

distortional buckling has lower post-buckling reserve than local buckling and will 

dominate response even when at the same buckling load. The presence of a global mode 

in the collapse regime is a surprise, and warrants further study.  

5.5.3 Modal identification: models with initial imperfections 

Imperfections have a significant influence on nonlinear collapse analysis. A series of 

different imperfection distributions and magnitudes are explored for each of the three 

models and the results summarized here.  

5.5.3.1 Local dominant model 

For the local dominant model, five imperfection schemes are considered. The 

distributions are based directly on the local or distortional buckling mode shapes from 

CUFSM analysis [54] and listed along with the magnitude of the geometric imperfections 

in Table 5-2. 
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Table 5-2 Imperfection cases and their peak loads 

Case
Waves along 

member
Distribution Magnitude

Peak load 

(kN)

I n/a n/a 0 72.9

II 5 Local 0.1t 72.1

III 1 Outward distortional 0.1t 73.1

IV 1 Inward distortional 0.1t 72.6

V 1 Outward distortional 0.94t 68.3  

                                     Note:  (1) t is the thickness of the cross-section. 

                                                (2) Wave numbers are determined from the characteristic half-wavelengths  

                                                     of local and distortional buckling from CUFSM analysis. 

 

Load-displacement responses for the local dominant models are provided in Figure 

5-6(a), and indicate generally mild imperfections sensitivity in the studied cases. The 

(modal) participations are provided in Figure 5-6(c)-(f) for the cases with imperfections 

II-V, respectively. When the local imperfection is presented (case II), slightly lower peak 

load is observed compared to the perfect geometry (case I), and participations (e.g., 

between local and distortional) remain essentially the same. For this local dominant 

model, the strength of the member is not greatly influenced by a small amount of 

distortional imperfection (case II and IV, 0.1t), but is significantly reduced when the 

magnitude is bigger (case V, 0.94t). Illustrating the point that not all imperfections are 

detrimental, at small magnitudes the outward distortional imperfection (case III) actually 

increases the strength above the no imperfection results (case I).  

The participation results of Figure 5-6(c)-(f) provide further insights. For a local 

dominant model with a local imperfection (case II) the results are similar to the no 

imperfection results (case I) and local participations dominate except in the post-peak 

range where distortional participation increases significantly. 
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In the local dominant model with small distortional imperfections (cases III and IV) 

the initial participations are largely distortional, consistent with the imperfection, but 

under increasing load to its elastic buckling limit (around 21 kN indicated by the 

eigenvalue analysis as listed in Table 5-1) local buckling is triggered. The deformations 

move towards local modes and local participations increase and dominate prior to 

reaching the peak strength. Again, in the collapse regime, distortional buckling 

deformations start to grow rapidly and finally take over again. 

However, even in the local dominant model, if the magnitude of the distortional 

imperfection is large enough (case V) then both local and distortional participations are 

observed throughout the loading regime. Consequently, this leads to a local-distortional 

interacted failure at the peak strength. In the collapse regime, distortional deformations 

once again dominate. For all the cases studied, if end shortening (G4) is excluded from 

the global buckling mode, then there are negligible global contributions during collapse.  
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(a) load-displacement responses (b) no imperfections 
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(c) local imperfections (0.1t) (d) outward distort. imperfections (0.1t) 
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(e) inward distortional imperfections (0.1t) (f) outward distort. imperfections (0.94t) 

Figure 5-6 Local dominant model 
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5.5.3.2 Distortional dominant model 

For the distortional dominant model, three imperfection schemes are studied: no 

imperfection (case I); local imperfections with 8 half-waves and a magnitude of 0.1t (case 

II); and distortional imperfections with 2 half-waves and a magnitude of 0.1t (case III). 

Load-displacement response and modal identification results shown throughout the 

nonlinear collapse analysis are provided in Figure 5-7. The distortional dominant model 

is far more imperfection sensitive than the local dominant model. Introduction of even a 

0.1t imperfection results in peak strength decreases from the no imperfection (case I) 

model of 9% (below 149 kN) for the local imperfection (case II) and 14% loss for the 

distortional imperfection (case III). In addition, with little to no post-buckling regime 

before collapse the initial imperfection is more influential even in the collapse regime – 

as evidenced by the strongly local-distortional interacted failure that results from the local 

(case II) imperfection. If the imperfection matches the collapse, as in Case III, then the 

participation of the given mode, distortional in this case, will persist throughout the 

analysis. Such a “sympathetic” imperfection is likely to consistently be the most 

detrimental with respect to strength.  
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(a) load-displacement responses (b) no imperfections 
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(c) local imperfections (0.1t) (d) distortional imperfections (0.1t) 

Figure 5-7 Distortional dominant model 

 

5.5.3.3 Local/distortional interacted model 

For the local-distortional interacted model, similar to the distortional dominant 

model, three imperfection schemes are studied: no imperfection (case I); local 

imperfections with 5 half-waves and a magnitude of 0.1t (case II); and distortional 

imperfections with 2 half-waves and a magnitude of 0.1t (case III). Load-displacement 

response and modal identification results shown throughout the nonlinear collapse 

analysis are provided in Figure 5-8. 



191 

 

 

0 2 4 6
0

50

100

150

200

250

300

350

Displacement, mm

P
, 
k
N

 

 

I

II

III

 

0

20

40

60

80

100

0 2 4 6
0

20

40

60

80

100

Displacement, mm

P
a

rt
ic

ip
a

ti
o

n

0

20

40

60

80

100

 

 

G4

G

D

L

ST

Error

0 1 2 3 4
0

20

40

60

80

100

Displacement, mm

P
a

rt
ic

ip
a

ti
o

n

0

20

40

60

80

100

 

 

G4

G

D

L

ST

Error

0 1 2 3 4
0

20

40

60

80

100

Displacement, mm

P
a

rt
ic

ip
a

ti
o

n I

 

(a) load-displacement responses (b) no imperfections 
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(c) local imperfections (0.1t) (d) distortional imperfections (0.1t) 

Figure 5-8 Local-distortional interacted model 

 

In this interacted model when the imperfection matches a particular mode (e.g. 

local), that mode starts out as dominant (under no load), then decreases its participation 

under deformation as the other mode (e.g., distortional) increases. However, past peak, 

the distortional mode dominates and the local mode decreases its participation while a 

global mode (exclusive of G4) also increases. The magnitude of the nonlinear collapse 

participations indicate the failure is an interaction between the two modes; however 
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where the eigenbuckling analysis (Table 5-1) suggests local buckling will largely control, 

the collapse analysis suggests distortional buckling will dominate. 

5.6  Discussion 

The examples provided herein provide proof-of-concept for the extension of modal 

identification, driven by cFSM base vectors, to nonlinear collapse analysis. A key issue 

that arises in the analysis that requires further study is how to handle the primary 

displacement associated with a given loading. In the simple loading case provided here 

the primary displacement was essentially coincident with the G4 global mode, thus it was 

possible to consider participations both with and without this mode considered. However, 

for more complicated loading the separation is less clear. It is proposed that the entire 

linear elastic deformations associated with the applied loading on the perfect structure 

should be removed from the identification, but this idea needs further study.  

In modal identification problems for eigenbuckling modes the necessity of shear and 

transverse extension (ST) is typically not obvious. However, consistent with observations 

in GBT [62] in the examples provided here ST has growing importance in the collapse 

regime, typically greater than 2% of the participation.  

Though not specifically provided herein it is also worth noting that the error in the 

identification process is normally larger in the collapse regime due to the localization of 

the deformations. Potentially, this may be reduced by including base vectors with a larger 

number of longitudinal terms. However, the additional computational effort can be 

significant.  
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From a behavioral standpoint the dominance of distortional buckling in the post-

peak regime of lipped channels, independent of the pre-peak deformations is an 

interesting result. Local failures, whereby local buckling dominates the response up to the 

peak strength are observed, but the collapse mechanisms that are triggered are typically 

better captured by the distortional base vectors.  

Further, it is worth recalling that although the cFSM base vectors span a sufficient 

part of the FEM deformation space (and hence identification with only small errors is 

possible) the actual separations into the G, D, L, and ST spaces are based on linear elastic 

response. Specifically, when it is observed that distortional buckling dominates in the 

post-peak regime, what this implies is that the largely plastic deformations associated 

with the collapse are best described by the elastic displacements associated with 

distortional buckling. This extension of elastic base vectors to describe plastic 

deformation fields is practical, and appears potentially useful in an engineering sense, but 

further work is needed before such an identification could be considered rigorous.   

Finally, a long term goal of this work is to connect collapse mechanisms and their 

related energy dissipation to the G, D, L, and ST deformation spaces. Currently, no 

simple means exists for predicting energy dissipation in members, and modal 

identification and categorization provides new information to make these connections. 

Future work in this direction is anticipated.  

5.7  Summary 

A set of generalized base vectors developed from the constrained finite strip method 

are employed to identify the deformations of the nonlinear collapse analysis of a thin-
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walled member in terms of global, distortional, local, shear, or transverse extension 

deformations. The applicability of the method is first demonstrated on the linear elastic 

static analysis. Then, the applicability is further demonstrated with numerical examples 

of geometrically perfect and imperfect cold-formed steel lipped channel members under 

uniform end shortening. The results indicate how the participation of a given deformation 

space evolves under load. For example, in the case of a member dominated by local 

buckling, the local mode has the only significant participation prior to collapse (peak 

strength); however, in the collapse regime distortional deformations have a large 

participation as they better describe the localized collapse mechanism that forms. The 

analysis results quantitatively demonstrate the interplay between local, distortional, and 

global buckling during collapse and even demonstrate the importance of shear and 

transverse extension (particularly during collapse). This chapter provides proof-of-

concept for the extension of cFSM base vectors to modal identification of nonlinear 

collapse models and significant discussion on future work that remains in this area. 
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Chapter 6 Design applications of the finite strip method and modal 

identification 

 

 

6.1  Introduction 

In cold-formed steel member design, the elastic buckling load is a key parameter in 

predicting the design strength. For commonly used cold-formed steel sections, such as the 

C-section, Z-section, etc., the buckling loads may be categorized as local-plate, 

distortional, and/or global (Euler, Lateral-torsional, etc.) buckling. Finding the elastic 

buckling solution is a necessary first step in strength prediction.  

Starting in 2004, Appendix 1 of the North American Specification for Cold-Formed 

Steel Structural Members (AISI-S100) introduced an alternative design method for 

strength prediction of beams and columns: the Direct Strength Method (DSM). The basic 

premise of DSM and the advantages of the method are discussed in [42]. The 

aforementioned elastic buckling loads are at the heart of the DSM approach. More 

specifically, DSM requires that the elastic buckling loads be known in local, distortional, 

and global buckling modes. DSM does not specify how these elastic buckling values 

should be calculated since numerous methods exist, as discussed in the DSM 

commentary found in Appendix of AISI-S100 [43].  
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The application of the developed finite strip method (FSM) and modal identification 

method for finite element method (FEM) are illustrated here for elastic buckling 

prediction.  Issues associated with the application are discussed. 

6.2 Two step method based on signature curve 

6.2.1 Problem statement 

There are several issues when applying FSM solutions in the context of the Direct 

Strength Method, particularly when one wants to automate and generalize the process. 

First, DSM requires the elastic buckling loads (or moments) for all sections, thus they 

must be identified in all cases. Second, the treatment of the corners introduces 

complications in the process that must be specifically addressed.  

From a strictly practical standpoint all cross sections have rounded (not sharp) 

corners. For stability determination in FSM such round corners can be directly handled 

by approximating with several (at least 4) strips in the corners, as shown in Figure 6-1(b). 

However, a straight-line model, ignoring the corners, as shown in Figure 6-1 (a) is useful 

for its simplicity and even necessary in certain cases since the modal decomposition 

capacity of cFSM cannot be fully utilized for sections with rounded corners. Of course, 

the rounded corner model does result in modestly different elastic stability solutions. 
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(a) Rounded corner model; (b) Straight-line model 

Figure 6-1 Cross-section models and dimensions for use in FSM analyses  

 

The conventional, or semi-analytical, FSM provides the most widely used approach 

to examine all possible instabilities in a thin-walled member under longitudinal stress 

(axial, bending, and/or warping torsion). If both local and distortional buckling can be 

uniquely determined from an FSM solution, as shown in Figure 1-4, then this is defined 

as a solution with “unique minima”. However, if either or both minima is “indistinct” 

the FSM solution is characterized as having “non-unique minima”. Studies show that 

the problem is a common one for SSMA stud sections [66]. 

cFSM has the capability to automatically predict the elastic buckling load (or 

moment) for a given buckling mode (e.g., a solution decomposed to only include 

distortional buckling is possible.) Thus, cFSM is a potential solution to the problem of 

non-unique minima. However, there are two basic difficulties to overcome with directly 

using the cFSM solution: 

(1) DSM‟s strength expressions are calibrated to the conventional FSM minima 

instead of pure mode solutions from cFSM.  
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(2) cFSM can not handle rounded corners and still provide a meaningful separation of 

local and distortional buckling. 

Thus, the reasoning for identifying non-unique minima and rounded corners as the 

two major hurdles in automatic identification using FSM and DSM becomes clear. 

6.2.2 Proposed solution 

To address the problem of non-unique minima in the stability solution, and the 

impact of rounded corners, a two-step method is proposed here: the use of a straight-line 

model in cFSM to determine only the half-wavelength of interest in a conventional FSM 

analysis. 

To address these issues a two-step procedure has been adopted for determining the 

elastic buckling loads and moments. Step 1: the analyst develops a rounded corner model 

of the section and runs a conventional FSM model. If unique minima exist, then stop, and 

use those values. Step 2: the analyst develops a straight-line model of the section and runs 

cFSM pure mode solutions for local and distortional, only for the purpose of determining 

the length (Lcr) at which the modes occur. The elastic buckling load (or moment) is 

determined from the conventional FSM with round corners (Step 1) model at the Lcr 

identified in the Step 2 model. An abbreviation for this solution method is FSM@cFSM-

Lcr, which is illustrated for a 550S162-43 stud section under axial compression in Figure 

6-2. The validity of this approach is fully explored in [66] and shown to provide 

consistent results. 
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Figure 6-2 Signature curve augmented with pure mode cFSM solution and illustration of 

the proposed FSM@cFSM-Lcr solution to identifying non-unique minima 

6.3  Method based on FSM solution of general boundary conditions 

6.3.1 Conventional FSM solution 

Investigation of the characteristic buckling modes of an FSM solution for general 

boundary conditions is similar to FEM: at a physical length the higher modes provide the 

most direct manner for finding the G, D, and L buckling load or moment. The first 

identified modes (in ascending buckling values) of G, D, and L can be used as the needed 

inputs in DSM.  

In particular, for FSM, the participation of longitudinal terms of the mode can be 

used to aid the categorization of the buckling modes in combination with the mode 

shapes. As discussed in Chapter 2.5, for members, if the simply supported half-
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wavelengths are known for local (Lcr), distortional (Lcrd), and global buckling (Lcre), m 

near L/Lcr, L/Lcrd, and L/Lcre shall indicate the contribution of local, distortional, and 

global buckling to the buckling mode.  

By utilizing the fundamental longitudinal terms, as discussed in Section 2.5, there 

are two distinct advantages: 1) increase the computational efficiency without significant 

loss of accuracy of stability solution; and 2) the stability solution is able to potentially 

include all the three characteristic buckling modes (G, D, and L) for identification. 

6.3.2 Method with modal identification 

If cFSM is applicable (no round corners), modal identification can be performed by 

cFSM. Participations of G, D, L, and ST/O for each buckling mode can aid in 

categorizing the buckling modes. Thus, one can pick the first identified G, D, and L 

modes based on certain exceedance rule. For most of the cases, as illustrated in Table 6-1, 

the participation of G, D, or L is larger than 90% which unambiguously indicts the mode 

is nearly pure G, D, or L mode. However, some of the modes are interacted with two or 

all of G, D, and L modes as indicated by their significant participations; the 

categorization of these modes is not trivial given the coupling. The question is, how large 

should the participation of one characteristic mode (G, D, or L) be in order to be 

categorized that mode?  

Though other rules are available, two quantification rules are explored: 75%ile 

exceedance and 50%ile exceedance.  For each mode class (G, D, and L), the 1
st
 identified 

modes are those of most interest. While nearly pure G, D, or L modes (usually more than 

90%ile exceedance of individual mode) are desired, buckling modes with 75%ile 
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exceedance of individual G, D, or L mode already show clear dominance of one 

particular characteristic buckling mode. Interaction with other characteristic modes can 

be considered as small.   With 50%ile exceedance rule, the first buckling mode that has at 

least 50%ile participation of individual G, D, or L mode could be identified as a mode 

with dominance of one characteristic G, D, or L mode.  However, highly interacted, e.g., 

GD, LD, or GL interacted, may be selected in this case. Both rules are explored in the 

numerical examples presented herein. 

While it is logical to pick up the modes that have the highest individual G, D, or L 

participation, this may pick up higher modes with significantly larger critical loads, thus 

leading to unconservative prediction of the nominal strength. Further this is dependent on 

the number of eigen modes recovered by the solver. 

6.3.3 Alternative way implemented by modal decomposition 

Modal decomposition in cFSM has the ability to decompose the deformation field 

into an individual mode or combined modes of interest. Though the critical loads of pure 

modes in cFSM can not be used directly with DSM, the longitudinal terms contributing 

most to the pure modes can be determined and these terms then used in the conventional 

FSM solution to force the member to buckle in the desired local or distortional buckling 

mode. These buckling loads may then be used as DSM inputs to predict the ultimate 

strength in design.  

The method is quite effective especially for the local buckling mode. However, for 

the distortional buckling mode, depending on the member length and boundary 

conditions, one may need to go through many higher modes to find the distortional 

buckling mode even when only using the longitudinal terms suggested by pure mode (i.e., 
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m ~ L/Lcr). This is because distortional buckling mode has an intermediate half-

wavelength, and the longitudinal terms required to form the distortional buckling mode 

may overlap with the global buckling mode (usually longitudinal term m=1) for a short 

member.  

For the global buckling mode, the modal decomposition solution of G and ST/O by 

cFSM can provide a fairly close result compared to a conventional FSM solution. See [27] 

for more details about comparison between pure G modes. 

6.4  Method based on FEM for general boundary conditions 

As introduced in Chapter 4, the finite element method (FEM), utilizing shell 

elements, has become more common in analyzing the stability of thin-walled structures 

thanks to advances in computational power. As powerful as FEM can be, there is no 

modal identification and decomposition capability for stability solutions of thin-walled 

members. So, FE-based thin-walled design requires elastic buckling values of 

characteristic modes still be investigated through laborious visual examination and 

subjective engineering judgment.  Now, with the developed modal identification method 

proposed in Chapter 4, quantification of buckling modes can be calculated and judgment 

of the buckling mode can be made based on a quantitative basis. Possible automation in 

the application in design can be sought with the quantitative participation of buckling 

modes in the FEM solution. A brief summary of methods regarding traditional 

observation and modal identification in applications follow. 
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6.4.1 Traditional observation method 

Finite element modeling requires some effort in initiating the model.  Once the FEM 

model is ready, elastic buckling analysis can be performed and buckling behavior can be 

studied.  The goal of the stability analysis for thin-walled members is to find the 

characteristic buckling modes: G, D, and L. 

By understanding the essential features of each characteristic buckling mode (shape, 

half-wavelength, etc.), appropriate categorization of the higher modes can be made 

through engineering judgment. The first identified modes (in ascending buckling values) 

of G, D, and L can be used as the needed inputs in DSM. It is worth noting that there are 

possibilities that some of the interacted modes may be hard to categorize, and for short 

members global buckling mode is often not observed from the selected number of modes 

(e.g., 50 in our studies). (Note, from a practical points, if Pcr/Py or Mcr/My is high enough 

the elastic buckling identification is irrelated, See DSM design guide [43].) 

6.4.2 Method with Modal identification 

The proposed modal identification method of Chapter 4 provides the opportunity to 

quantify the buckling modes into fundamental buckling classes in terms of their 

participations from stability solutions of an FEM model. Therefore, a more reliable 

categorization can be made based on quantitative participation. However, similar to FSM, 

there is a question as to how large the participation of one characteristic mode should be 

in order to be categorized the mode.  

The same quantification rules applied for FSM modal identification can be used for 

FEM modal identification. Therefore, two quantification rules are explored: 75%ile 

exceedance and 50%ile exceedance.  For each mode class (G, D, and L), the first 
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identified modes are those of greatest interest. These buckling loads may then be used as 

DSM inputs to predict the ultimate strength in design. Both rules are illustrated in the 

numerical examples. 

6.5 Numerical examples 

The numerical examples presented here are focusing on the application of FSM and 

FEM for general boundary conditions. Systematic studies on the two-step method by the 

author based on the signature curve can be found in [66]. For general boundary 

conditions, consider the numerical studies in Chapter 4 regarding modal identification of 

FEM elastic buckling analysis are considered here. 

6.5.1 FSM-like boundary condition cases 

6.5.1.1 Elastic buckling loads of characteristic G, D, and L buckling modes 

For the case studies with FSM-like boundary conditions, the comparison of FSM and 

FEM results in terms of both modal participations and critical loads show great 

agreement (Table 4-2). In fact, the summarized G, D, and L modes in Table 4-2 are based 

on a combined investigation method involving observation, selection of reasonably high 

modal participation, and also mode shape matching. 

With the methods established for FSM in Chapter 6, the identified characteristic G, 

D, and L buckling modes are listed in Table 6-1 for conventional FSM by traditional 

observation and modal identification methods. Clearly, using different rules for the modal 

identification method, may yield different G, D, and L characteristic buckling modes. In 

Table 6-1 for FSM solutions, this occurs for the characteristic distortional buckling mode 

of C-F. For the 3
rd

 mode, a localized distortional buckling mode (refer to FEM buckling 
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mode C-F in Figure 4-2) is observed at the free end. Modal identification indicates 73% 

distortional buckling participation and 22% global buckling participation while the 6
th

 

mode is a more uniform distortional buckling mode (refer to FEM buckling mode C-F in 

Figure 4-2) with 88% D participation, as shown in Figure 4-8. If considering the 

sensitivities of modal identification, 73% may be still approximately falling into the 

75%ile exceedance rule, thus 3
rd

 mode may be the characteristic distortional buckling 

mode of C-F.  

Similarly, Table 6-2 gives the characteristic G, D, and L buckling modes for FEM 

models with FSM-like boundary conditions. Similar to FSM solutions, different 

characteristic buckling modes may be identified by different methods. However, in 

general the results are quite robust. 

Table 6-1 Characteristic buckling modes of FSM by different methods 

mode # Pcr (kN) mode # Pcr (kN) mode # Pcr (kN)

G 1 60.6 1 60.6 1 60.6
D 3 156.9 3 156.9 3 156.9
L 8 191.0 8 191.0 8 191.0
G 12 204.2 12 204.2 12 204.2
D 1 162.8 1 162.8 1 162.8
L 5 191.3 5 191.3 5 191.3
G 1 118.0 1 118.0 1 118.0
D 2 158.0 2 158.0 2 158.0
L 6 191.1 6 191.1 6 191.1
G 1 22.1 1 22.1 1 22.1
D 3 95.8 6 161.6 3 95.8
L 10 191.3 10 191.3 10 191.3
G 1 61.1 1 61.1 1 61.1
D 3 157.8 3 157.8 3 157.8
L 7 191.1 7 191.1 7 191.1

Boundary 

conditions
75%ile exceedance 50%ile exceedance

Modal identificationObservation
Characteristic 

buckling mode

S-S

C-C

S-C

C-F

C-G
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Table 6-2 Characteristic buckling modes of FEM by different methods 

mode # Pcr (kN) mode # Pcr (kN) mode # Pcr (kN)

G 1 60.4 1 60.4 1 60.4
D 3 160.3 3 160.3 3 160.3

L 9 201.5 9 201.5 7
(a) 198.7

G 7 201.6 7 201.6 7 201.6
D 1 163.7 1 163.7 1 163.7
L 5 201.5 5 201.5 5 201.5
G 1 112.2 1 112.2 1 112.2
D 2 159.1 2 159.1 2 159.1
L 8 201.5 8 201.5 8 201.5
G 1 22.0 1 22.0 1 22.0

D 3 84.8 7
(b) 163.2 3 84.8

L 11 201.5 11 201.5 11 201.5
G 1 60.6 1 60.6 1 60.6
D 3 163.7 3 163.7 3 163.7
L 7 201.5 7 201.5 7 201.5

(a): 65%ile of local

(b): 65%ile of distortional

S-S

C-C

S-C

C-F

C-G

Boundary 

conditions

Characteristic 

buckling mode

Observation Modal identification
75%ile exceedance 50%ile exceedance

 

6.5.1.2 Nominal strength by Direct Strength Method 

Once the needed characteristic G, D, and L buckling modes are identified, their 

critical buckling loads can be used as inputs in DSM to predict the nominal strength of 

the member. For a column, the DSM equations are provided in Eq. (1-4) – (1-6) in 

Chapter 1.4. Utilizing those equations with the critical buckling loads in Table 6-1 and 

Table 6-2, the nominal strength of a member can be obtained based on the different 

methods in identifying the characteristic buckling modes, as provided in Table 6-3 and 

Table 6-4. Note, the yield stress is assumed to be 345 MPa. The member is considered as 

globally restrained. In this case it has been assumed, flexural or flexural-torsional 

buckling will not happen (i.e., Pcre = ∞), so the nominal strength of global buckling (Pne) 

can reach the squash load (Py). 
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Table 6-3 Nominal strengths of the columns by FSM solutions  

Pn (kN) Controlled mode Pn (kN) Controlled mode Pn (kN) Controlled mode

unrestrained 53.1 G 53.1 G 53.1 G
full restrained 121.5 D 121.5 D 121.5 D
unrestrained 117.1 L 117.1 L 117.1 L

full restrained 123.4 D 123.4 D 123.4 D
unrestrained 92.0 G 92.0 G 92.0 G

full restrained 121.9 D 121.9 D 121.9 D
unrestrained 19.4 G 19.4 G 19.4 G

full restrained 97.8 D 123.0 D 97.8 D
unrestrained 53.6 G 53.6 G 53.6 G

full restrained 121.8 D 121.8 D 121.8 D

S-S

C-C

S-C

C-F

C-G

Boundary 

conditions
global restraint?

Observation Modal identification
Based on 75%ile 

exceedance

Based on 50%ile 

exceedance

 

Table 6-4 Nominal strengths of the columns by FEM solutions 

Pn (kN) Controlled mode Pn (kN) Controlled mode Pn (kN) Controlled mode

unrestrained 53.0 G 53.0 G 53.0 G
full restrained 122.6 D 122.6 D 122.6 D
unrestrained 117.4 G 117.4 G 117.4 G

full restrained 123.6 D 123.6 D 123.6 D
unrestrained 89.3 G 89.3 G 89.3 G

full restrained 122.2 D 122.2 D 122.2 D
unrestrained 19.3 G 19.3 G 19.3 G

full restrained 92.3 D 123.5 D 92.3 D
unrestrained 53.1 G 53.1 G 53.1 G

full restrained 123.6 D 123.6 D 123.6 D

C-C

S-C

C-F

C-G

global restraint?

Observation Modal identification
Based on 75%ile 

exceedance

Based on 50%ile 

exceedance

S-S

Boundary 

conditions

 

As shown in Table 6-3 and Table 6-4, nominal strength predicted by the FSM 

solution and FEM solutions is very close.  If the member is not globally restrained, the 

strength is controlled by the global buckling mode. The only exception is for C-C, with a 

lower critical local buckling load predicted by the FSM solution compared to the FEM 

solution, the strength is controlled by local buckling though distortional buckling has the 

lowest critical load as shown in Table 6-1 (actually, local/global buckling interaction has 

been taken into consideration through Eq. (1-5)). Once the member is globally restrained, 

the member strength is controlled by distortional buckling. 



208 

 

For this member (Figure 4-1) with the boundary conditions studied here, based on 

different categorization methods, the predicted nominal strengths are the same for nearly 

all cases. However, differences are observed for the globally restrained case with C-F 

boundary conditions. Based on the 50%ile exceedance rule, the 3
rd

 mode, a 

distortional/global interacted mode with much lower critical load, is identified as 

characteristic distortional buckling mode (see Table 6-1 and Table 6-2),  thus leads to a 

much smaller nominal (more conservative) strength (Table 6-3 and Table 6-4). 

6.5.2 Partially-restrained beam cases 

6.5.2.1Elastic buckling loads of characteristic buckling modes 

For all the three cases in Chapter 4.6, the characteristic buckling modes are 

indentified based on the two methods for the FEM solution. The identified characteristic 

buckling modes are provided in Table 6-5.   

For distinct modes, such as G in beams without springs or with weak springs and D 

in all three cases, the identified buckling modes are the same by both observation and 

modal identification methods. The dominance of these distinct modes is obvious, as 

suggested by 75%ile exceedance and confirmed by the buckling mode shapes in Figure 

4-41. In fact, the contribution is more than 90% for these distinct modes, as shown in 

Figure 4-38 - Figure 4-40.   

However, the local buckling mode for the beam models is less distinct. Significant 

engineering judgment is needed for the local buckling mode when investigating the 

buckling modes by observation, because of the mode interaction. Without springs, the 

20
th

 mode shows the dominance of local buckling with 78%ile exceedance while the 18
th

 

mode has 71%ile exceedance of the local buckling mode. However, with practical springs, 
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no buckling mode has 75%ile exceedance of local buckling in the first 50 modes. The 

observed local buckling mode (36
th

 mode) in Table 6-5 is a very subjective choice. Modal 

identification indicates 53% local participation. The 1
st
 buckling mode with 50%ile 

exceedance of local buckling is the 28
th

 mode with 51% participation, which indicates the 

mode is highly coupled with other buckling modes (in this case, it is distortional). 

In addition, for beams with practical springs, the global buckling mode is greatly 

restrained. No distinct global buckling mode is found in the first 50 modes based on 

observation and 75% exceedance rule. Further, the 1
st
 distinct global buckling is the 68

th
 

mode at a critical moment of Mcr = 37.8 kN-m. However, based on the 50% exceedance 

rule, the 32
nd

 mode indicates an interacted mode with obvious feature of flexural buckling 

in major-axis bending with 50%ile exceedance interweaving with local and distortional 

buckling, as shown in Figure 4-41(c). Note, in fact, if Mcre is bigger than 2.78, no need to 

worry about global buckling. 

Table 6-5 Identified characteristic buckling modes for all three cases  

Observation Observation Observation

75%ile 50%ile 75%ile 50%ile 75%ile 50%ile

Mode # 1 1 1 8 8 8 32

Pcr (kN-m) 5.8 5.8 5.8 11.5 11.5 11.5 22.7

Mode # 2 2 2 1 1 1 1 1 1

Pcr (kN-m) 7.8 7.8 7.8 7.8 7.8 7.8 8.9 8.9 8.9

Mode # 20 20 18 28 37 18 36
(b) 28

Pcr (kN-m) 18.2 18.2 18.0 19.3 19.9 18.1 23.2 21.9

(a): observation is made in the first 50 modes

(b): approximately based on engineering judgment

G n/a
 (a) n/a

D

L n/a

Beam w/o springs Beam w/ weak springs Beam w/ practical springs

Characteristic buckling 

mode

Modal Identification Modal Identification Modal Identification

 

6.5.2.2 Nominal strength by Direct Strength Method 

Once the needed characteristic G, D, and L buckling modes are identified, their 

critical buckling loads can be used as inputs in DSM to predict the nominal strength of 
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the member. For the beam, the DSM equations are provided in Eq. (1-8) – (1-10) in 

Chapter 1.4. Utilizing those equations with the critical buckling loads in Table 6-5, the 

nominal strength of the member can be obtained based on the different methods in 

identifying the characteristic buckling modes, as provided in Table 6-6. Note, for 

characteristic buckling mode identified as „n/a‟ in Table 6-5, the critical moments are 

assumed to be large enough that this mode will not control the strength prediction. 

Table 6-6 Nominal strengths of the beams 

Observation Observation Observation

Based on 

75%ile 

exceedanc

e

Based on 

50%ile 

exceedanc

e

Based on 

75%ile 

exceedanc

e

Based on 

50%ile 

exceedanc

e

Based on 

75%ile 

exceedanc

e

Based on 

50%ile 

exceedanc

eControlled mode G G G D D D D D D

Pcr (N-m) 4.7 4.7 4.7 5.0 5.0 5.0 5.3 5.3 5.3

Beam w/o springs Beam w/ weak springs Beam w/ practical springs

Modal Identification Modal Identification Modal Identification

 

As shown in Table 6-6, the predicted strengths are the same for all the three beam 

cases regardless of the different categorization methods.  

6.6  Discussions 

Though it is premature to make a conclusion as to which rule should be used for the 

modal identification method, it is safe to say that the 50%ile exceedance rule gives a 

lower bound prediction, although applying critical loads of interacted modes into DSM 

equations warrants further investigation. In particular, the examples presented here are 

always dominated by the distinct modes (G, or D) that have lower critical loads though 

certain modes (e.g., L) are found as a coupled mode. Examples where the critical loads 

are coupled modes are necessary. In addition, more systematic study in design 

applications is needed for the proposed rule of modal identification. 
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Though not mentioned previously, the modal identification based on the FSM 

solution of general boundary conditions and FEM solution is only applicable to straight-

line model (without corners) due to the fact that cFSM can not handle rounded corner. 

More study is needed to handle the corners based on these solutions. 

6.7 Summary 

In this chapter, the application of the finite strip method and the finite element 

method with modal identification are presented with numerical examples and the Direct 

Strength Method. A two-step method is proposed based on the signature curve to 

overcome the indistinct minima and handle the corners of the members. Different 

methods of identifying the characteristic buckling modes are discussed for the finite strip 

method of general boundary conditions. Applications with the Direct Strength Method 

are illustrated with emphasis on utilizing the modal identification results. Similar 

applications for FEM solution are also discussed. 
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Chapter 7 Summary and recommendations 

 

 

7.1  Summary 

This dissertation presents a comprehensive set of research efforts on the numerical 

modeling of thin-walled structures, in particular cold-formed steel members, with an 

emphasis on the development of a new conventional and constrained finite strip method 

for elastic buckling analysis of members with general end boundary conditions, and an 

automated modal identification method for the shell finite element method to identify the 

characteristic buckling modes in elastic buckling analysis and to categorize the failure 

modes in nonlinear collapse analysis. 

A new conventional finite strip method is explicitly derived, implemented and 

validated to account the general end boundary conditions: pin-pin, fixed-fixed, fixed-pin, 

fixed-free, and fixed-guided. The elastic and geometric stiffness matrices based on the 

specially selected longitudinal shape functions are provided in a general form with only 

specific integrals remaining boundary condition dependent. The validation studies show 

excellent agreement between eigenbuckling solutions by FSM and shell FEM with 

general end boundary conditions. However, one must take care to insure enough (or the 

proper) longitudinal terms are included in the series to capture all buckling modes of 

interest. For any end boundary condition other than simple supports, multiple 

longitudinal half-waves participate in the solution, even when simple buckling patterns 
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may be visually identified. The relationship between signature curves and general FSM 

solutions reveals the buckling characteristics of local, distortional, and global modes. 

Longitudinal terms of greatest interest included in the buckling analysis are then 

recommended as an approximation to increase the computational efficiency. Springs are 

appropriately accounted for in the FSM modeling. Verification studies show excellent 

agreement with an analytical solution for global buckling. However, pre-buckling stress 

in FSM is different from that in an FEM model with springs, especially for beam 

members, resulting in different buckling prediction. The analyst should be aware of this 

difference. As demonstrated herein the boundary conditions should not be mixed in the 

same FSM model. 

Based on the new conventional finite strip method, the existing cFSM solutions for 

pin-pin boundary conditions are recast into a new generalized notation for general end 

boundary conditions; specifically the constraint matrices for the global, distortional, 

local, and other deformation spaces are written in the generalized notation. The 

theoretical background of the method for general boundary conditions is shown, and the 

procedure for defining the pure buckling modes (in the natural basis) is explicitly 

presented. Two ways to define the other modes are provided as either Shear (S) and 

transverse extension (T) modes, or the more mathematical notion (O) of the null of the 

GDL space and related options are discussed. With the natural basis in place, the modal 

basis (axial or applied) is defined by solving the constrained eigenvalue problem within 

each space. Coupled and uncoupled bases are accordingly presented. Summary of the 

available bases and normalization is discussed. The modal decomposition solution is 

presented using the developed cFSM methodology for general end boundary conditions 
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and compared with Generalized Beam Theory (GBT). In addition, modal identification is 

studied for FSM stability modes for general end boundary conditions. For application 

purpose, recommendations for basis, normalization of the base vectors, normalization of 

the participation results, and selection of the ST or O space are made for the user of 

cFSM. 

In Chapter 4, the modal identification method for shell finite element method 

eigenbuckling analysis is proposed by employing the base vectors from the constrained 

finite strip method for general end boundary conditions. Necessary extrapolation of the 

base functions to finite element context is provided and minimization problem required is 

shown. Associated base functions, where the cFSM and FEM end boundary conditions 

correspond, are shown to provide modal identification in agreement with existing cFSM 

implementations, and with traditional visual observation for modal identification. 

Generalized base functions, generated from a subset of the new cFSM base vectors, are 

proposed, which are intended for arbitrary end boundary conditions. Modal identification 

utilizing generalized base vectors is shown to be in good agreement with those utilizing 

the associated base vectors. In addition, numerical studies of semi-rigid and mixed end 

boundary conditions demonstrate the applicability of the generalized base vectors to 

modal identification with arbitrary end boundary conditions. Moreover, studies on 

partially restrained beam indicate the applicability of modal identification for member 

with intermediate restraints. Furthermore, exact match of the finite element and finite 

strip models in terms of meshing is demonstrated to be not necessary. Extrapolation of 

the cFSM base functions is able to provide close modal identification solution. This 

enables the applicability of modal identification on member with geometrical change 
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along the length such as holes and tapers.  Numerical study on modal identification with 

holes shows the method provides reasonable quantitative classification of buckling modes 

that are far laborious to identify by observation.  

For nonlinear collapse analysis in Chapter 5, the modal identification method 

follows the same procedure as for elastic buckling analysis in Chapter 4, except that the 

modal identification is performed on the general displacement vector instead of buckling 

mode vector and the displacement vector need be corrected by the imperfection in the 

model. The method is first demonstrated capturing the behavior correctly on the linear 

elastic static analysis that associates with the GD deformation. Then, the applicability of 

the method is further demonstrated with numerical examples of geometrically perfect and 

imperfect cold-formed steel lipped channel members under uniform end shortening. The 

results indicate how the participation of a given deformation space evolves under load. 

Results show that the failure mode at the peak is sensitive to both the cross section and 

the imperfection in the model. In the collapse regime distortional deformations have a 

large participation as they better describe the localized collapse mechanism that forms. 

The analysis results quantitatively demonstrate the interplay between local, distortional, 

and global buckling during collapse and even demonstrate the importance of shear and 

transverse extension (particularly during collapse). 

The application of finite strip method and finite element method in conjugate with 

modal identification are presented with numerical examples with direct strength method. 

First, based on the signature curve, a two-step method is proposed to overcome the 

indistinct minima and handle the corners of the members. Then, different methods of 

identifying the characteristic buckling modes are discussed for both the finite strip 
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method and finite element method. Concentration has been given on the use of modal 

identification solution. Applications with direct strength method illustrate the proposed 

exceedance rules in categorizing the characteristic buckling modes are applicable though 

more systematic research is needed.  

Among other things, the newly developed conventional and constrained finite strip 

methods provide researcher and engineer a useful tool to study the behaviour of thin-

walled structural member. Modal identification has the ability to categorize and reduce 

the complicated deformations that occur in a shell finite element model, which will 

ultimately aid Specification development, which must simplify complicated behaviour 

down to strength predictions in isolated buckling classes. 

7.2  Recommendations for future research 

The finite strip method developed in this research is based on the Kirchhoff thin-

plate theory and assume only axial edge traction. To take into consideration transverse 

loading, the geometric stiffness should include the potential work associated with second-

order shear strains in Green-Lagrange functions. In addition, to accurately take into 

account shear effects, the Mindlin plate theory should be employed. Moreover, the 

membrane and bending coupling can be included as well by Mindlin plate theory. 

The modal identification provides a method to quantitatively categorize the complex 

buckling behaviors.  However, more systematic study in design application is needed for 

utilizing this modal identification solution towards an automated design procedure. For 

example, the proposed categorization rules for characteristic buckling modes based on the 

participation need further validation both numerically and experimentally. 
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Moreover, modal identification provides the participation of fundamental buckling 

mode classes for each mode. How to utilize these participation values in design requires 

further research. One possible way is to perform a reduction of the critical load or 

nominal strength based on the participation. This will provide a way to handle the 

interacted buckling modes.   

Modal identification for nonlinear collapse analysis provided in this research is a 

proof-of-concept for the extension of modal identification. As discussed in Chapter 5, 

how to handle the primary displacement associated with a given loading requires further 

study. In the simple loading case provided in this research the primary displacement 

associated with loading was removed since it essentially coincidents with the G4 global 

mode. However, for more complicated loading the separation is less clear. It is proposed 

that the entire linear elastic deformations associated with the applied loading on the 

perfect structure should be removed from the identification, but this idea needs further 

study.  

 In addition, how to connect collapse mechanisms and their related energy 

dissipation to the G, D, L, and ST deformation spaces need further study. Currently, no 

simple means exists for predicting energy dissipation in members, and modal 

identification and categorization provides new information to make these connections. 

Future work in this direction is anticipated.  

Finally, as discussed in Chapter 6, the modal identification is only applicable to 

straight-line model (without corners) due to the fact that cFSM can not handle rounded 

corner. More study is needed to pass the modal identification solutions of elastic buckling 

and nonlinear collapse analyses to models with corners. 
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Appendix A: Integrals from I1 to I5 
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where Y[m] can be found in Section 2.1. The following only lists the non-zero terms. 
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Appendix B: CUFSM v4 

 

B.1 Flow charts of the program 

CUFSM is coded to analyze elastic buckling behavior of thin-walled members. The 

general procedures to perform finite strip analysis and advanced modal 

decomposition/modal identification analysis are illustrated in Figure B-1. For constrained 

finite strip method (cFSM), the procedure to generate the base vectors is shown in Figure 

B-2. 

Start

Inputs: node, prop, elem, lengths (half-wave lengths or physical lengths), BC 
(boundary conditions), m_all (longitudinal terms), GBTcon, springs, constraints

Assembly K, Kg matrices 

All 
lengths?

springs
?

Klocal.m
kglocal.m
trans.m

assembly.m

User 
constraints

?

cFSM?

1st length

addsprings.m

Solve the eigenvalue problem (reduced if cFSM turned on or 
user defined constraint existing)

Generate natural basisbase_col
umn.m

Orthogonalization and 
normalization

base_up
date.m

Select constrained 
modes, constraint 

matrix Rmode

Mode_s
elect.m

Add user constraint to 
constraint matrix R

constraint 
matrix Rmode=I

constr_user.m
Stiffness matrix: K, 

Kg

Reduced Stiffness matrix: 
Kff=RTKR, Kgff=RTKgR

No, 
R=Rmode

Yes

Yes

No Yes

No

General FSM or Modal 
Decomposition solutions

Modal Identification

strip.m

Known general 
displacement or mode, 

d

Generate natural 
basis, base_column.m

Orthogonalization and 
normalization, full basis 

R, base_update.m

Classification: d=Rc

All 
lengths?

END
No Yes

Yes

No

END

classify.m
curve, 
shapes

 

Figure B-1 Flow chart of the CUFSM code 
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base_column.m

Input: prop, node, elem, a 
(length), hwn ( longitudinal 

numbers for this length), BC

base_properties.m

1st longitudinal term in hwn

mode_constr.m

yDOFs.m

base_vectors.m

All 
longitudinal 

terms?
END

Yes

Rx,Rz,Rp,Ryd,Rys,Rud
constraint matrices necessary for mode 
separation for each longitudinal term

Node info. (main, sub), 
ngm,ndm,nlm,nom,DOFperm, etc. 

These are invariant for all the 
longitudinal term m

Warping distribution for global 
buckling and distortional buckling for 
each longitudinal term

b_v_m, base vactors for global, dist., local 
and other modes for each longitudinal 
term m

b_v, base vectors for all the 
longitudinal terms 

 

Figure B-2 Flow chart for generating the base vectors 
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B.2 Screen shots of the program 

An updated user-friendly interface is created for the new CUFSM version. The 

screen shots are provided in the following with some explanations of the menus in terms 

of their functionality. The intent of these screen shots is not to provide a tutorial for using 

the software, but rather to illustrate some of the rudimental functionalities of the software 

fulfilled in the interface. A comprehensive tutorial will be provided separately later. 

The default screen when opening CUFSM 4 is in Figure B-3. The user can choose to 

load a saved data file then go to desired operation step. Or, the user can choose to input 

your own member data and appropriate boundary conditions.  

The default 
opening 
screen of 
CUFSM 4

Choice 1: 
select to 

load saved 
files

Choice 2: 
select to 

input your 
own section 

data

 

Figure B-3 Default opening screen of CUFSM 4 
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When getting into the input screen as shown in Figure B-4, the user need define the 

member in the similar fashion as the default member given. Possible spring stiffness can 

be added. So are any general constraints.  

 1

 2 3 4

 5

 6

 7  8  9

10

Define the material 

Define the model 
by node 
coordinates and 
their associated 
fixities

Define the node 
connectivity as 
elements with 
thickness and 
material

Define springs to 
the model

Define equation 
constraints to the model

Check section property

Apply loading

Cee and Zee section template

Manipulation of discretization

Plot options

 

Figure B-4 Input screen of CUFSM 4 

In Figure B-5, solution types are distinguished as two: 1) traditional signature curve 

solution; 2) general boundary condition finite strip solution. Signature curve solution is 

the traditional finite strip solution available in the previous CUFSM version. The solution 

is only applicable to simply-simply end boundary condition attribute to the orthogonal 

property of its associated longitudinal shape function. While for all the other boundary 

conditions, the loss of this orthogonality in the shape functions requires multiple 

longitudinal terms in the analysis. Appropriate longitudinal terms in the analysis can be 

recommended in Figure B-6 with enough accuracy and computational efficiency. 
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Y
m

 = sin(my/L), m=1

Solution types: signature curve is the 
traditional finite strip solution in all 
the previous versions, which is only 
applicable to S-S boundary 
conditions.  Length here is the half-
wavelength and the default 
longitudinal term for each length is 1 
as shown on right.

 
(a) Traditional signature curve solution 

Y
m

 = sin(my/L)sin(y/L), m=1

Solution types: general boundary 
condition solution focus on physical 
member lengths with enough longitudinal 
terms. Pre-defined boundary conditions 
can be selected from the drop-down 
menu. Longitudinal terms for each length 
are illustrated on right. Number of modes 
reported for each length can be specified 
in number of eigenvalues.
It is advisable to use the recommended m 
to get better solution and also save 
computational time.

 
(b) General boundary condition finite strip solution 

Figure B-5 Define the solution type and related boundary condition 
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Rules to 
generate these 

longitudinal 
terms in analysis

 

Figure B-6 Recommendation of longitudinal terms in the analysis 

With constrained finite strip method in Figure B-7, we can enable the modal 

decomposition and identification. Different bases are available while the default one is 

the one the authors recommend. Base vectors are defined based on the geometry of the 

cross section. Combined is the original finite strip degree of freedom space. These base 

vectors can be viewed through the viewer provided below. Appropriately selecting the 

base vectors included in the analysis will turn on the modal decomposition solution. 

Including all the base vectors will yield the original finite strip solution but modal 

identification can be performed. 

In Figure B-8, the similar post-processing of signature curve solution is illustrated 

with modal identification result. The interface is changed and improved from the 

previous CUFSM version. 
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Enable modal 
decomposition or 

identification by use of 
cFSM

Different basis

All the listed base vectors that can be 
explored below through the viewer 
define the original FSM space. Turn on 
and select properly to enable the 
modal decomposition.

 

Figure B-7 Constrained finite strip method setting 
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Figure B-8 Signature curve post-processing 
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For post-processing of general boundary condition finite strip solution in Figure B-9, 

we will mainly focus on the load factor of all the higher modes at the specified physical 

length. For each higher mode, the participation of longitudinal term relation can aid the 

user judge the buckling mode together with the buckling mode shape. User can also 

perform the constrained finite strip modal identification to quantify the buckling modes 

as shown in Figure B-10. 
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Figure B-9 Post-processing of general boundary condition solution 
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Figure B-10 Post-processing of general boundary condition solution with modal 

identification 

B.3 Codes 

CUFSM is assembled by several subroutines written in MATLAB. The main 

analysis subroutine is called strip.m. The code of strip.m is given below. Full code 

can be found at http://www.ce.jhu.edu/bschafer/cufsm. 

 

function 

[curve,shapes]=strip(prop,node,elem,lengths,springs,constraints,GBTcon,

BC,m_all,neigs) 
%HISTORY 
%June 2010, complete update to new Boundary conditions, Z. Li, B. 

Schafer 
% 
%INPUTS 
%prop: [matnum Ex Ey vx vy G] 6 x nmats 
%node: [node# x z dofx dofz dofy dofrot stress] nnodes x 8; 
%elem: [elem# nodei nodej t matnum] nelems x 5; 
%lengths: [L1 L2 L3...] 1 x nlengths; lengths to be analyzed 
%could be half-wavelengths for signiture curve 

http://www.ce.jhu.edu/bschafer/cufsm
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%or physical lengths for general b.c. 
%springs: [node# d.o.f. kspring kflag] where 1=x dir 2= z dir 3 = y dir 

4 = q dir (twist) flag says if k is a foundation stiffness or a total 

stiffness 
%constraints:: [node#e dofe coeff node#k dofk] e=dof to be eliminated 

k=kept dof dofe_node = coeff*dofk_nodek 
%GBTcon: GBTcon.glob,GBTcon.dist, GBTcon.local, GBTcon.other vectors of 

1's 
%  and 0's referring to the inclusion (1) or exclusion of a given mode 

from the analysis, 
%  GBTcon.ospace - choices of ST/O mode 
%         1: ST basis 
%         2: O space (null space of GDL) with respect to K 
%         3: O space (null space of GDL) with respect to Kg 
%         4: O space (null space of GDL) in vector sense 
%   GBTcon.norm - code for normalization (if normalization is done at 

all) 
%         0: no normalization,  
%         1: vector norm 
%         2: strain energy norm 
%         3: work norm 
%  GBTcon.couple - coupled basis vs uncoupled basis for general B.C. 

especially for non-simply supported B.C. 
%         1: uncoupled basis, the basis will be block diagonal 
%         2: coupled basis, the basis is fully spanned 
%  GBTcon.orth - natural basis vs modal basis 
%         1: natural basis 
%         2: modal basis, axial orthogonality 
%         3: modal basis, load dependent orthogonality 
%BC: ['S-S'] a string specifying boundary conditions to be analyzed: 
%'S-S' simply-pimply supported boundary condition at loaded edges 
%'C-C' clamped-clamped boundary condition at loaded edges 
%'S-C' simply-clamped supported boundary condition at loaded edges 
%'C-F' clamped-free supported boundary condition at loaded edges 
%'C-G' clamped-guided supported boundary condition at loaded edges 
%m_all: m_all{length#}=[longitudinal_num# ... 

longitudinal_num#],longitudinal terms m for all the lengths in cell 

notation 
% each cell has a vector including the longitudinal terms for this 

length 
%neigs - the number of eigenvalues to be determined at length 

(default=10) 

  
%OUTPUTS 
%curve: buckling curve (load factor) for each length 
%curve{l} = [ length mode#1 
%             length mode#2 
%             ...    ... 
%             length mode#] 
%shapes = mode shapes for each length 
%shapes{l} = mode, mode is a matrix, each column corresponds to a mode. 

  
%FUNCTIONS CALLED IN THIS ROUTINE 
% \analysis\addspring.m : add springs to K 
% \analysis\assemble.m : asseemble global K, Kg 
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% \analysis\elemprop.m : element properties 
% \analysis\kglocal.m : element kg matrix 
% \analysis\klocal.m : element k matrix 
% \analysis\trans.m : trasnform k, kg matrix 
% \analysis\msort.m : clean up 0's, multiple longitudinal terms. or 

out-of-order terms 
% \analysis\constr_BCFlag.m : determine flags for user constraints and 

internal (at node) B.C.'s 
% \analysis\cFSM\base_column : cFSM base vectors (natural basis, ST) 
% \analysis\cFSM\base_update.m' : cFSM base vectors with selected basis, 
%                                 orthogonalization, and normalization 
% \analysis\cFSM\constr_user.m : user defined contraints in cFSM style 
% \analysis\cFSM\mode_select.m : selection of modes for constraint 

matrix R 

  

  
%GUI WAIT BAR FOR FINITE STRIP ANALYSIS 
wait_message=waitbar(0,'Performing Finite Strip 

Analysis','position',[150 300 284 68],... 
    'CreateCancelBtn',... 
    'setappdata(gcbf,''canceling'',1)'); 
setappdata(wait_message,'canceling',0) 
%MATRIX SIZES 
nnodes = length(node(:,1)); 
nelems = length(elem(:,1)); 
nlengths = length(lengths); 

  
%CLEAN UP INPUT 
%clean up 0's, multiple terms. or out-of-order terms in m_all 
[m_all]=msort(m_all); 

  
%DETERMINE FLAGS FOR USER CONSTRAINTS AND INTERNAL (AT NODE) B.C.'s 
[BCFlag]=constr_BCFlag(node,constraints); 

  
%GENERATE STRIP WIDTH AND DIRECTION ANGLE 
[elprop]=elemprop(node,elem,nnodes,nelems); 

  
%----------------------------------------------------------------------

----------- 

  
%LOOP OVER ALL THE LENGTHS TO BE INVESTIGATED 
l=0; %length_index = one 
while l<nlengths 
    l=l+1; %length index = length index + one 
    % 
    %cancelled 
    if getappdata(wait_message,'canceling') 
        break         
    end 
    %length to be analyzed 
    a=lengths(l); 
    %longitudinal terms to be included for this length 
    m_a=m_all{l}; 
    % 
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    totalm=length(m_a);%Total number of longitudinal terms 

     
    %SET SWITCH AND PREPARE BASE VECTORS (R) FOR cFSM ANALYSIS 
    if 

sum(GBTcon.glob)+sum(GBTcon.dist)+sum(GBTcon.local)+sum(GBTcon.other)>0 
        %turn on modal classification analysis 
        cFSM_analysis=1; 
        %generate natural base vectors for axial compression loading 
        [b_v_l,ngm,ndm,nlm]=base_column(node,elem,prop,a,BC,m_a); 
    else 
        %no modal classification constraints are engaged 
        cFSM_analysis=0; 
    end 
    %test the time loop to see if we need the waitbar for assembly 
    if length(m_a)*length(node(:,1))>=120 
        wait_message_elem=waitbar(0,'Assembling stiffness 

matrices','position',[150 202 284 68]); 
    end 
    %ZERO OUT THE GLOBAL MATRICES 
    K=sparse(zeros(4*nnodes*totalm,4*nnodes*totalm)); 
    Kg=sparse(zeros(4*nnodes*totalm,4*nnodes*totalm)); 
    % 
    %ASSEMBLE THE GLOBAL STIFFNESS MATRICES 
    for i=1:nelems 
        %Generate element stiffness matrix (k) in local coordinates 
        t=elem(i,4); 
        b=elprop(i,2); 
        matnum=elem(i,5); 
        row=find(matnum==prop(:,1)); 
        Ex=prop(row,2); 
        Ey=prop(row,3); 
        vx=prop(row,4); 
        vy=prop(row,5); 
        G=prop(row,6); 
        [k_l]=klocal(Ex,Ey,vx,vy,G,t,a,b,BC,m_a); 
        %Generate geometric stiffness matrix (kg) in local coordinates 
        Ty1=node(elem(i,2),8)*t; 
        Ty2=node(elem(i,3),8)*t; 
        [kg_l]=kglocal(a,b,Ty1,Ty2,BC,m_a); 
        %Transform k and kg into global coordinates 
        alpha=elprop(i,3); 
        [k,kg]=trans(alpha,k_l,kg_l,m_a); 
        %Add element contribution of k to full matrix K and kg to Kg 
        nodei=elem(i,2); 
        nodej=elem(i,3); 
        [K,Kg]=assemble(K,Kg,k,kg,nodei,nodej,nnodes,m_a); 
        %WAITBAR MESSAGE for assmebly 
        if length(m_a)*length(node(:,1))>=120 
            info=['Elememt ',num2str(i),' done.']; 
            waitbar(i/nelems,wait_message_elem); 
        end 
    end 
    if exist('wait_message_elem')==1 
        if ishandle(wait_message_elem) 
            delete(wait_message_elem); 
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        end 
    end 
    %ADD SPRING CONTRIBUTIONS TO STIFFNESS 
    if ~isempty(springs) %springs variable exists 
        [K]=addspring(K,springs,nnodes,a,BC,m_a); 
    end 

     
    %INTERNAL BOUNDARY CONDITIONS (ON THE NODES) AND USER DEFINED 

CONSTR. 
    %Check for user defined constraints too 
    if BCFlag==0 
        %no user defined constraints and fixities. 
        Ru0=0; 
        nu0=0; 
    else 
        %size boundary conditions and user constraints for use in R 

format 
        %d_constrained=Ruser*d_unconstrained, d=nodal DOF vector (note 

by 
        %BWS June 5 2006) 
        Ruser=constr_user(node,constraints,m_a); 
        Ru0=null(Ruser'); 
        %Number of boundary conditiions and user defined constraints = 

nu0 
        nu0=length(Ru0(1,:)); 
    end 

     
    %GENERATION OF cFSM CONSTRAINT MATRIX 
    if cFSM_analysis==1 
        %PERFORM ORTHOGONALIZATION IF GBT-LIKE MODES ARE ENFORCED 
        

b_v=base_update(GBTcon.ospace,0,b_v_l,a,m_a,node,elem,prop,ngm,ndm,nlm,

BC,GBTcon.couple,GBTcon.orth);%no normalization is enforced: 0:  m 
        %assign base vectors to constraints 
        

b_v=mode_select(b_v,ngm,ndm,nlm,GBTcon.glob,GBTcon.dist,GBTcon.local,GB

Tcon.other,4*nnodes,m_a);%m 
        Rmode=b_v; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 
    else 
        %no modal constraints are activated therefore 
        Rmode=eye(4*nnodes*totalm);%activate modal constraints 
    end 
    % 
    %CREATE FINAL CONSTRAINT MATRIX 
    %Determine the number of modal constraints, nm0 
    if BCFlag==0 
        %if no user defined constraints and fixities. 
        R=Rmode; 
    else 
        %should performed uncoupled for block diagonal basis? 
        if cFSM_analysis==1 
            nm0=0; 
            Rm0=null(Rmode'); 
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            nm0=length(Rm0(1,:)); 
            R0=Rm0; 
            if nu0>0 
                R0(:,(nm0+1):(nm0+nu0))=Ru0; 
            end 
            R=null(R0'); 
        else 
            R=null(Ru0'); 
        end 
    end 
    % 
    %INTRODUDCE CONSTRAINTS AND REDUCE K MATRICES TO FREE PARTS ONLY 
    Kff=R'*K*R; 
    Kgff=R'*Kg*R; 

     
    %SOLVE THE EIGENVALUE PROBLEM 
    %Determine which solver to use 
    %small problems usually use eig, and large problems use eigs. 
    %the eigs solver is not as stable as the full eig solver... 
    %LAPACK reciprocal condition estimator 
    rcond_num=rcond(full(Kgff\Kff)); 
    %Here, assume when rcond_num is bigger than half of the eps, eigs 

can provide 
    %reliable solution. Otherwise, eig, the robust solver should be 

used. 
    if rcond_num>=eps/2 
        eigflag=2;%eigs 
    else 
        eigflag=1;%eig 
    end 
    %determine if there is a user input neigs; otherwise set it to 
    %default 10. 
    if nargin<10|isempty(neigs) 
        neigs=20; 
    end 
    if eigflag==1 
        [modes,lf]=eig(full(Kff),full(Kgff)); 
    else 
        options.disp=0; 
        options.issym=1; 
        N=max(min(2*neigs,length(Kff(1,:))),1); 
        if N==1|N==length(Kff(1,:)) 
            [modes,lf]=eig(full(Kff),full(Kgff)); 
        else 
        %pull out 10 eigenvalues 
        [modes,lf]=eigs(full(Kgff\Kff),N,'SM',options); 
        end 
    end 
    %CLEAN UP THE EIGEN SOLUTION 
    %eigenvalues are along the diagonal of matrix lf 
    lf=diag(lf); 
    %find all the positive eigenvalues and corresponding vectors, 

squeeze out the rest 
    index=find(lf>0 & imag(abs(lf))<0.00001); 
    lf=lf(index); 
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    modes=modes(:,index); 
    %sort from small to large 
    [lf,index]=sort(lf); 
    modes=modes(:,index); 
    %only the real part is of interest (eigensolver may give some small 

nonzero imaginary parts) 
    lf=real(lf); 
    modes=real(modes); 
    % 
    %truncate down to reasonable number of modes to be kept 
    num_pos_modes=length(lf); 
    nummodes=min([neigs;num_pos_modes]); 
    lf=lf(1:nummodes); 
    modes=modes(:,1:nummodes); 
    % 
    %FORM THE FULL MODE SHAPE BY BRINGING BACK ELIMINATED DOF 
    mode=R*modes; 
    % 
    %CLEAN UP NORMALIZATION OF MODE SHAPE 
    %eig and eigs solver use different normalization 
    %set max entry (absolute) to +1.0 and scale the rest 
    for j=1:nummodes 
        maxindex=find(abs(mode(:,j))==max(abs(mode(:,j)))); 
        mode(:,j)=mode(:,j)/mode(maxindex(1),j); 
    end 
    % 

     
    %GENERATE OUTPUT VALUES 
    %curve and shapes are changed to cells!! 
    %curve: buckling curve (load factor) 
    %curve{l} = [ length ... length 
    %             mode#1 ... mode#] 
    %shapes = mode shapes 
    %shapes{l} = mode, each column corresponds to a mode. 
    curve{l}(1:nummodes,1)=lengths(l); 
    curve{l}(1:nummodes,2)=lf; 
    %shapes(:,l,1:min([nummodes,num_pos_modes]))=modes; 
    shapes{l}=mode; 
    % 
    % 
    %WAITBAR MESSAGE 
    info=['Length ',num2str(lengths(l)),' done.']; 
    waitbar(l/nlengths,wait_message); 
    % 
end 
%THAT ENDS THE LOOP OVER ALL THE LENGTHS 
%----------------------------------------------------------------------

---- 
if ishandle(wait_message) 
    delete(wait_message); 
end 
% % 
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