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Abstract—Water waves impinging on a beach provides a good 
example of the ability of SPH to model complex free surface 
flows. The formation of a plunging breaker was shown early with 
the pioneering work of Monaghan [1]. Dalrymple and Rogers [2] 
examined breaking waves on a beach, noting that the initially 
two-dimensional wave field becomes three dimensional when the 
waves break. Recently Herault et al. [3] have developed a version 
of the SPHysics open source model 
(http://wiki.manchester.ac.uk/sphysics) for Nvidia graphics cards 
using the CUDA extended C++ programming language. Here we 
show 2D and 3D results using several Nvidia cards and 
demonstrate the speed-ups achievable with GPU programming 
versus CPU programming. Our speed up results are for three 
generations of Nvidia cards, including the new Tesla card, which 
has 240 streaming processors available. This paper will discuss 
the Nvidia CUDA code to point out the difference between using 
the GPU versus the CPU, the various methods used in the GPU 
model for such tasks as neighbor lists, the memory (shared, 
global, texture models), and the uses of CUDA kernels. We then 
present applications of the model to different water waves at 
beaches. The waves are created within 2D or 3D wave basins, 
with sloping beaches. The wavemaker is currently a sinusoidally 
forced flap wavemaker, but that is easily changed. As the waves 
shoal and break on the slope, the motion clearly becomes three-
dimensional. The surf zone vorticity will be discussed and the 
coherent turbulent eddies will be identified using longshore and 
cross-shore sections and the q-criterion of Dubief and Delcayre 
[4] (2000). 

I. INTRODUCTION  
The introduction of the massively parallel graphic 

processors (GPU) and particularly of the first compiler (NVidia 
CUDA) allowing the programming outside of a strictly graphic 
context of those processors has changed the game in terms of 
numerical simulation.  

Indeed a graphic card of the last generation has a 
computational power of about 1TFlops and costs only 300 €. It 
is therefore quite natural to use the GPU for scientific 
computation and numerical simulation.  

Regarding the hardware, one could consider the GPU as a 
massively parallel computer accessing a global device memory, 
holding hundreds of computing units employing a new 
architecture called Single Instruction Multiple Threads (SIMT).  
This architecture is akin to the Single Instruction Multiple Data 
(SIMD) vector organisation. The NVidia GPU of the last 

generation (G200) has 240 processors, and a device to device 
memory bandwidth of about 140 Go/s for a computational 
power of about 1 TFlop.  

At this time, only NVidia distributes a C compiler 
dedicated to those processors, which has a certain number of 
restrictions, the most important ones being the impossibility of 
writing recursive functions and the lack of dynamical 
allocation in device memory. Also, we can only hope to obtain 
optimum performance by conforming closely to the SIMT 
scheme. Indeed, for compute bound operations if the scheme is 
respected, except for some few exceptions, we are certain to 
have a code whose performances scales linearly with the 
number of processors. In addition, one must also acknowledge 
that the memory bandwidth between the graphic card and the 
host by the PCI bus is one-to-two order of magnitude lower 
than the one for the device memory. 

Those material constraints are making impossible the direct 
transformation of a numeric code, even parallelized in a GPU 
version. The use of GPU as a mathematical coprocessor is also 
quite limited by the low bandwidth of the PCI bus.  

Because of their structure, SPH are particularly well 
adapted to the GPU. In fact, except in a few rare cases, notably 
for the treatment of solid boundaries, the calculation of forces, 
speed and positions is done rather in the same manner for all 
particles, in a SIMT fashion.  

In this context we have developed a GPU version of the 
SPhysics code. To take the most advantage of the GPU 
performances, the ensemble of the algorithms is executed on 
the GPU, the transfers between host and GPU happening only 
to record the results of the calculation.  

II. PREVIOUS WORK 
The first implementation of the SPH method totally on 

GPU was realized by Kolb and Kuntz [5], and Harada et al. [6] 
(both occurring before the introduction of CUDA). Earlier 
work by Amada et al. [7] used the GPU only for the force 
computation, while administrative tasks such as neighbor 
search was done on the CPU, requiring no less than two host-
card memory transfers at each iteration.    

Both Kolb and Kuntz and Harada used OpenGL and Cg (C 
for graphics) to program the GPU, requiring knowledge of 
computer graphics and also some tricks to work around the 
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restrictions imposed by these languages. In particular, since 
OpenGL doesn't offer the possibility to write to three-
dimensional textures, the position and velocity textures have to 
be flattened to a two-dimensional structure. 

III. SPH FORMULATION 
We use almost the same formulation as in SPhysics that we 

shall briefly recall. In all formulas below, h is the smoothing 
length, W the smoothing kernel, rab = ra − rb , vab = va − vb , 

r = rab , Wab =W (r,h)  and 
b
∑ denotes the sum over the 

neighbors of the particle a. 

A. Smoothing kernels 
We implemented four smoothing kernels: cubic spline, 

quintic spline, quadratic and Wendland.   

B. Continuity equation 
dρa
dt

= mb
b
∑ vab∇aWab     (1) 

C. Momentum equation with artificial viscosity 

dva
dt

= − mb
b
∑ Pa

ρa
2 +

Pb
ρb
2 +∏ab







∇aWab + g  (2) 

where∏
ab

is the artificial viscosity term [8] defined by : 

 ∏
ab
=

−αcabµab

ρab
, if  vab .rab < 0

0, otherwise









     

with µab =
hvab .rab

r2 + 0.01h2
, ρab =

1
2
ρa + ρb( )  and 

cab =
1
2
ca + cb( )  

D. Momentum equation with laminar viscosity 
For the laminar viscosity term we use the formulation given 

by Morris et al. [9]: 

dva
dt

= − mb
b
∑ Pa

ρa
2 +

Pb
ρb
2







∇aWab + g

+ mb
b
∑ 4ν0rab .∇aWab

ρa + ρb( ) r2
vab

  (3) 

where ν0  is the kinetic viscosity. 

E. Equation of state 
Following Monaghan [1] and Batchelor [10] the 

relationship between pressure and density is assumed to follow 
the expression: 

P = B ρ
ρ0








γ

−1












    (4) 

where γ = 7 and B is chosen such that the minimum sound 

speed is ten times greater than the maximum expected flow 
speed [1]. 

F. Kernel corrections 
We implemented a zeroth order and a first order Moving 

Least Square (MLS) kernel correction used to periodically 
reinitialize the density field. 

Among that we also implemented the velocity gradient 
correction proposed by Chen and Braun [11]. 

The MLS and Chen and Braun kernel corrections require a 
matrix inversion. In order to avoid any attempt to invert a 
singular matrix we use the following criterion: the matrix M is 
inverted only if  M k

> ε  , k being the dimension of M and ε a 
safety factor typically set to 0.01. 

1) Zeroth order: Shepard Filter 
The ‘Shepard Filter’ [12] is a straightforward correction 

where the density field is periodically reinitialized using the 
following equation: 

 

ρa = mb
b
∑ Wab     (5) 

where 

 

Wab =
Wab

mb

ρbb
∑ Wab

 

2) First order: MLS 
The MLS approach developed by Dilts [13] is a first order 

correction designed to exactly reproduce linear variations of 
the density field. As for the Shepard filter, the density field is 
periodically reinitialized using the following equation: 

 

ρa = mb
b
∑ W MLS

ab     (6) 

where W MLS
ab is the corrected kernel evaluated as follow: 

W MLS
ab = b(ra ).rabWab  

In 2D the correction vector b is given by: 

b(ra ) = A
−1

1
0
0

















 

where: 

 

A =
mb

ρbb
∑ Wab

A  

 

A =

1 xa − xb ya − yb
xa − xb xa − xb( )2 xa − xb( ) ya − yb( )
ya − yb xa − xb( ) ya − yb( ) ya − yb( )2



















 

3) Chen and Braun gradient correction 
The Chen and Braun gradient correction is a generalization 

of the Bonnet and Lok [14] correction for the gradient of the 
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velocity. It consist in replacing the term ∇aWab  by Aa
−1∇aWab  

where A is the matrix defined by: 

Aa =
mb

ρbb
∑ ∇aWab ⊗ rba    (7) 

G. Boundary conditions 
We implemented repulsive boundary conditions proposed 

by Monaghan and Kos [15] using special particles generating a 
short-range repulsive force according to: 

   

f (r) =
D

r0

r







p1

−
r0

r







p2











r
r

, if  r ≤ r0

0, if  r > r0










  (8) 

where   r0 is the range of action,   p1 = 12  and    p2 = 6  and D is a 
problem depending constant. 

We also implemented open periodic boundary conditions. 

H. Time integration 
We use the Predictor-Corrector scheme. As an example, for 

the velocity, the predictor step predict the midpoint:  

va
n+1
2 = va

n +
Δt
2
dva

n

dt
    (9) 

while the corrector step is: 

 

va
n+1
2 = va

n +
Δt
2
dva

n+1
2

dt
    (10) 

the value of v at the end of the step is then: 

 

va
n+1 = 2 va

n+1
2 − va

n = va
n + Δt dva

n+1
2

dt
  (11) 

The evolution of density and position are similar. 

When using variable time-stepping, the time step is 
calculated according to (Monaghan and Kos [15]): 

Δt = 0.3min Δt f ,Δtcv( )

Δt f = mina
h
fa
; Δtcv = mina

h

c +maxb
hvab .rab
rab
2

 (12) 

We also implemented the XSPH correction given by 
Monaghan [16]. 

IV. CUDA PROGAMMING MODEL 

A. Hardware considerations 
The CUDA enabled NVidia processors (modèles G80, G92 

et G200) share the same hardware architecture (figure 1): each 
processor is made up by a set of multiprocessors each one 
containing eight processors. 

 
Figure 1.  Hardware organization 

Each multiprocessor has four kinds of on-chip memories:   

• a set of 32 bits registers per processor, 

• a shared memory shared by all processors of the same 
multiprocessor, 

• a read only constant cache designed to speed-up reads 
from constant memory, 

• a read only texture cache designed to speed up texture 
read. Textures are accessed via a texture unit 
implementing various addressing and filtering modes 
(like texture interpolation). 

The device itself accesses a global memory space, located 
on the board, the device memory. 

B. Software considerations 
CUDA is an extension of C programming language that 

allows the programmer to write functions executed directly on 
the graphic processor. Unlike other classic C functions, those 
functions called kernels (not to be confused with SPH kernels), 
are executed N times, in parallel by N different CUDA threads. 
At this time, CUDA does not support recursive functions. 

Those threads are organized in a grid containing an 
ensemble of blocks. As a rule, the size of the grid is directly 
linked to the size of the data to be treated. Those blocks are 
processed by a multiprocessor. The number of threads per 
block is limited by the number of registers and by the quantity 
of shared memory used by the kernel. Each multiprocessor has 
a special unit, the SIMT unit, in charge of spreading the threads 
between the various processors. This architecture is related to 
the SIMD architecture of the vectorial computers while being 
less restrictive: two threads executed over two different 
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processors can execute different instructions. However, this 
comes at a cost, so it is recommended to restrict to the bare 
minimum the conditional instructions leading to those 
situations.  

The access time to the memory depends as well of the type 
of memory involved:  

• the first access to the device memory has a latency of 
400 - 600 clock cycles, 

• access to shared memory and registers is generally a 
zero extra clock cycle operation, 

• constant cache and texture cache are cached memory, 
so the access cost in the event of a cache miss is the 
same that for the device memory, otherwise it just costs 
one read from the cache. 

The device memory bandwidth can be improved using 
some special access patterns, called coalesced accesses (for 
details see the CUDA Programming Guide). The thread 
scheduler can hide the memory access latency if the kernel 
contains sufficient independent arithmetic instructions that can 
be issued while waiting for other memory access to complete. 
Such kind of kernel is called compute bound kernel and 
guaranties a linear performance scaling in respect of the 
number of processors. In opposition a kernel involving mostly 
memory accesses is called memory bound kernel and will not 
scale with the number of processors.  

The texture cache is optimized for spatial locality, so 
threads of the same block reading texture addresses close 
together will achieve a better performance. 

The shared memory is shared by the threads of a block, and 
cannot be used for inter-block communication.  

There is no way to avoid read-after-write, write-after-read 
or write-after-write hazards in device memory, so there are no 
global variables safely accessible by all the threads of a grid. 
CUDA provides Atomic Functions to perform safely read-
modify-write operations, but they are restricted to integers and 
have a significant cost. 

Summarizing, in order to obtain the best performance, we 
can list three main issues: 

• choose the most suitable kind of memory with the best 
access pattern, 

• restrict to absolute minimum conditional instructions, 

• try to have a maximum of  compute bound kernels. 

V. SPH IMPLEMENTATION WITH CUDA 

A. General overview 
The code for our CUDA implementation of SPH exploits 

C++ structures to clearly isolate the components. The CPU part 
is composed of a Problem virtual class from which the actual 
problems (dam break, piston, paddle, …) are derived. A 
ParticleSystem class acts as an abstraction layer for the particle 
system, taking care of CPU and GPU data structure 
initialization and CUDA kernels calling. It exposes methods to 
initialize data, run each simulation time step, and retrieve 

simulation results for visualization  (OpenGL image displayed 
on screen and refreshed periodically as the model is running) 
or on-disk storage (targa image format and/or VTU data file 
written at a given interval). 

Following the classical SPH approach, the algorithm for the 
simulation time step can be decomposed into the following 
four steps: neighbor search and list update, force computation, 
velocity and position update. In addition, Shepard or MLS 
filtering can be periodically done. 

B. The Problem class 
The Problem class is the user-exposed part of the code. In 

order to run a new type of problem, the user must write a child 
class of Problem in which it defines all the simulation 
parameters (domain size, smoothing length, kernel type, 
density at rest, coefficients for the equation of state,…) and 
options (periodic boundary, variable time step, kernel 
correction to apply,…). In addition it must fill an array with the 
initial particle position, velocity and density. This is done by 
implementing the virtual functions defined in the Problem 
class.  

Furthermore the user is provided with a set of geometrical 
utility classes (for rectangles, polygons, cubes, …) with a 
function allowing the user to fill the corresponding geometry 
with particles.  

C. Inside the ParticlSystem class 
1) CUDA kernels development guidelines 

The methods of ParticleSystem class handle the whole SPH 
simulation by calling different CUDA kernels. All CUDA 
kernels are written using the following guidelines: 

• the arrays stored in the device memory are allocated 
once, before the beginning of the computation, 

• the particles data are stored in arrays with elements of 
one, two or four floats in order to ensure in most of the 
cases coalesced memory access. When it’s not possible 
the array are bound to a one dimensional texture and 
accessed via a texture fetch, 

• except for radix sort used by neighbor search and 
parallel reduction used for the adaptive time-stepping, 
one thread processes one particle, 

• the constants used in SPH formulation are stored in the 
constant memory, 

• we avoided any unnecessary runtime conditional 
expressions arising from the simulation options by 
using the templatization capabilities of the CUDA C 
compiler (selection of the kernel type, viscosity type, 
periodic boundary) or by writing multiples slightly 
different versions of CUDA kernels (variable time 
step, use of gradient correction, XSPH). 

2) Data structures 
All the data are stored in arrays in the device memory. The 

more relevant are listed below: 

• the pos arrays contain positions and masses, 

• the vel arrays contain velocities and densities, 
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• the forces array contains the accelerations and density 
derivatives  

• the neiblist array contains the indexes of all neighbors 
of all particles. 

Actually we have two pos and vel arrays for handling the 
extra storage needed by the integration scheme. 

3) Neighbor list construction 
For the neighbor search, we use the algorithm described in 

the Particles example of the CUDA toolkit (Green, 2008). The 
computational domain is divided into a grid of linearly indexed 
cells; each particle is assigned the cell index it lies in as a hash 
value, and the particles are reordered by their hash value. The 
neighbor list for each particle is then built by looking for 
neighbors only in nearby cells. Four CUDA kernels are 
involved in the neighbor list construction: hash calculation, 
hash table sorting with a radix sort, particle reordering and the 
neighbor list builder. We actually fix the maximum number of 
neighbors per particle at compile time for simplicity and 
efficiency reasons, as it allows the compiler to unroll any loop 
involved, resulting in faster code and allowing us to avoid any 
complex index tricks. 

Rather than computing the neighbor list on the fly at each 
iteration, we store the neighbor list in the neiblist array that 
gets rebuilt periodically (typically every 10 iterations). This 
choice requires more memory but results in faster execution, 
since the neighbor search is a memory-bound operation and 
therefore doesn't scale up with the computational power of the 
GPU. 

4) Force computation 
The Forces CUDA kernel is devoted to the density 

derivative and acceleration computation. It walks through the 
neighbor list of the particle, accumulating the density 
derivative and acceleration according to equations (1), (2) or 
(3) and (8). 

When using the Chen and Braun gradient correction, the 
Forces kernel firstly computes the correction matrix (eq. 7), 
inverts it, and proceeds to the density derivative and 
acceleration computation with the corrected gradient. The 
kernel has thus, at this stage, gone twice through the particles’ 
neighbor list.   

 The resulting acceleration and density derivative are stored 
in the forces array.  

For adaptive time-stepping we perform a first parallel 
reduction directly in the Forces kernel taking advantage of 
shared memory. This allows us to find the value of the time 
step (eq. 12) for the particles processed by the same thread 
block. The maximum time step value is then found by calling a 
parallel reduction kernel on the remaining data. 

5) Time integration and positon update 
The two integration steps in the Predictor-Corrector method 

(eq. 9 and 10) are structurally very similar to a simple Euler 
integration step. So we implemented a basic Euler kernel doing 
such operation. 

Then, a full integration step consist in: 

• a call to the Forces kernel to compute density 
derivative and acceleration at time step n, 

• a call to the Euler kernel with an half-fed time step to 
compute the positions and velocities at time step n + 
1/2, 

• a call to the Forces kernel to compute the corrected 
density derivative and acceleration  at time step n + 
1/2, 

• a last call to Euler kernel with a full time step to 
complete the integration. 

The position and velocities of boundary particles are 
updated according to their type (fixed boundary particles or 
moving boundary particles belonging to a gate, piston or 
paddle).  

In case of adaptive time-stepping each call to the Forces 
kernel is followed by a call to a parallel reduction kernel. The 
time step used at the next iteration is then set at the value of the 
lower of the two time steps given by the two parallel 
reductions. 

6) Shepard and MLS kernel corrections 
The Shepard and MLS kernel corrections are implemented 

in two CUDA kernels periodically called during the 
computation at a user-defined rate (typically every 20 – 40 
time step). 

As for the Forces kernel those kernels perform a walk 
through (one for the Shepard correction and two for the MLS 
correction) the neighbor list computing the corrected density 
according to equations (5) or (6). 

VI. BENCHMARKS 
Table 1 shows the speedup of our implementation against 

its execution on the CPU only. The table shows that the 
neighbor list kernels do not scale linearly with the number of 
processors in the GPU; this indicates that they are memory-
bound, which is expected given that their main feature is to 
reorder memory structures based on the particle hash and that 
this only requires a small number of mathematical operations. 
For the force calculation procedure the speedup is considerably 
closer to the optimal speedup, indicating that the corresponding 
kernels are compute-bound, as expected. 

The Euler step scales roughly linearly with the GPU 
compute capability, indicating a strong computational bound, 
but its advantage over the reference CPU is closer to the 
memory-bound procedures. Reasons for this can be found in 
the high memory access/operation ratio (5 memory accesses 
for 4 operations) and in the highly vectorization structure of the 
Euler computation that is exploited by the vectorized 
instructions available on the CPU. 

Fig. 2 shows the repartition of calculation time between the 
different parts of the algorithm. 
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TABLE I. SPEED-UPS BY GPU TYPE AND CODE PROCEDURE FOR GPU-
SPHYSICS CODE FOR 677,360 PARTICLES 

GPU model (#number of processors) 
Procedure 

8600m (32) 8800GT (110) GTX 280(240) 

Neighbor list 4.4 11.8 15.1 

Force calculation 28 120 207 

Euler step 3.2 13.7 23.8 

 

 
Figure 2.  Repartition of calculation time. 

Note that the speedups in Table 1 are calculated against the 
performance of the GPU code when run on a single CPU, an 
Intel Core2 Duo at 2.5GHz. It must be noted that this code is 
not optimal for CPU execution: for example, it does not 
consider the symmetry in particle interactions, evaluating them 
twice (once per particle instead of once per particle pair): 
although the independent, repeated evaluation is almost a 
necessity on the GPU, it is an unnecessary burden on the CPU; 
optimizing it away would improve the CPU speed by a factor 
of two, halving the speed-ups in Table 1. 

VII. APPLICATIONS 

A. Breaking waves 
PaddleTest3D and a PaddleTest2D class were developed to 

examine waves in a wave basin or tank, respectively.  The 
model problem involves generating boundaries for the 
tank/basin, including the sidewalls and the bottom, using a Rect 
(for rectangle) object, that creates a wall filled with boundary 
particles.   In 3D, the bottom consists of two rectangles—a flat 
section, upon which the wavemaker is placed, and a sloping 
beach section.  The wavemaker is another Rect object that 
stretches across the width of the tank and that moves with a 
prescribed sinusoidal motion (in time) about a line on the 
bottom.  The paddle motion increases in amplitude linearly 
with elevation from the bottom to create a flap wavemaker.  
Finally, fluid particles are placed between the wavemaker and 
the beach in layers spaced Δp apart in all three dimensions. Δp 
is the initial particle spacing, which is related to the smoothing 
length of the weighting kernels by h=1.3Δp. 

It is straightforward to vary the tank geometry, including 
the beach slope, and the wave properties, such as the wave 
period and the amplitude of the paddle motion, which are 
related [16].  This leads to different kinds of breaking waves on 
the slope:  spilling, plunging, or surging.  Dalrymple and 
Rogers [2] show that the SPH methodology is fully capable at 
examining plunging breaking waves with splash-up. 

The GPU-SPHysics code, once initiated, produces three 
types of output.  The first is real-time display of the waver tank 

or basin, with the current wave field, using OpenGL.  The 
OpenGL image can be rotated about three axes, zoomed, and 
the user has the option of displaying particle positions, or 
pressure, or velocity mapped onto the particles.   This provides 
the user with confidence that the model is running correctly.  
User-chosen periodic time-interval screen-capturing of the 
OpenGL window results in saved images (.tga format).  
Finally, also at a user-chosen periodic interval, data files are 
written that capture particle positions, velocities, pressures and 
densities at that instant.  Currently these data files are in VTU 
format. 

Fig. 3 shows a simulation using the PaddleTest3D model, 
but for waves in a narrow tank. This simulation was carried out 
on an Nvidia Tesla card, using 4 million particles—near the top 
limit that we can use, based on our current GPU-SPHysics 
code. The straight lines in the figure denote the various 
rectangles and polygons used to generate the wave tank 
boundaries. The wavemaker is at the left and it creates 
sinusoidal 2D waves—the model begins with the entire tank 
filled with still water and then the wavemaker begins moving. 
The water is shown in blue, while paler colors (and white) 
denote water moving at higher velocities.  Interestingly, as the 
waves shoal on the sloping bottom and eventually break, the 
streakiness of the water in the middle of the tank and 
shoreward indicates that some three dimensionality develops in 
the flow.   

Another positive result of the test is that the intersection 
between the dry beach and the water changes with time, 
moving on average shoreward.  This is a manifestation of 
wave-setup, which is caused by the conservation of momentum 
of the incoming waves being balanced during breaking by the 
hydrostatic response of the surf zone. 

 

 
Figure 3.  Wave tank test of the 3D GPU-SPHysics code, showing wave 
breaking and three-dimensional features developing in the breaking region.  
Wavemaker to the left generates 2D motion and the beach is located on the 
right. 

Using a wider wave tank shows that GPU-SPHysics has some 
likelihood of modelling nearshore hydrodynamics, such as 
longshore currents and rip currents.   In Fig. 4 the tank that is 
as wide as it is long is shown. In this wider domain, the wave 
crests are no longer straight but show some variation along the 
beach (on the right). 
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Figure 4.  The wave basin is set up similarly to the wave tank in Figure 2.  
Here red denotes the high velocity regions.   

B. Dam break on a real topography 
We developed a special version of the ParticleSystem 

object dedicated to the simulation of flows on a real 
topography. The mains differences with the previously 
presented version are: 

• for the neighbor list construction we divided the 
domain into a two-dimensional grid,  

• the Digital Elevation Model (DEM) describing the 
topography is stored in a two-dimensional texture, 

• we did not use any boundary particles to represent 
topography, but instead generated the repulsive force 
according to equation (8), i.e. in consideration of (i) 
the distance between the particles and the terrain and 
(ii) the associated normal direction. 

We take benefit of the built-in linear texture interpolation in 
order to have smooth elevations and normals for close particles 
regardless of the resolution of the DEM (Fig. 5). 

 
Figure 5.  In blue the DEM data, in red terrain normals generated at a 

resolution ten times less than that used for the DEM.   

 

 

 
Figure 6.  Evolution of the dam break at 0.5s, 5.03s and 9.16s.   

Fig. 6 shows the evolution of the flow caused by a dam 
break on a real topography. For that simulation we used a 1m 
resolution DEM, an initial particle spacing of 0.2m and around 
170000 particles. 
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