
Modeling Water Waves in the Surf Zone with GPU-
SPHysics

Alexis Herault, Anna Vicari, Ciro del Negro
INGV - Sezione di Catania

Piazza Roma, 2
95123 Catania, Italy

herault@ct.ingv.it, vicari@ct.ingv.it, delnegro@ct.ingv.it

Robert A. Dalrymple
Department of Civil Engineering

John Hopkins University
3400 NO. Charles St., Baltimore, MD 21204

rad@jhu.edu

Abstract—Water waves impinging on a beach provides a good
example of the ability of SPH to model complex free surface
flows. The formation of a plunging breaker was shown early with
the pioneering work of Monaghan [1]. Dalrymple and Rogers [2]
examined breaking waves on a beach, noting that the initially
two-dimensional wave field becomes three dimensional when the
waves break. Recently Herault et al. [3] have developed a version
of the SPHysics open source model
(http://wiki.manchester.ac.uk/sphysics) for Nvidia graphics cards
using the CUDA extended C++ programming language. Here we
show 2D and 3D results using several Nvidia cards and
demonstrate the speed-ups achievable with GPU programming
versus CPU programming. Our speed up results are for three
generations of Nvidia cards, including the new Tesla card, which
has 240 streaming processors available. This paper will discuss
the Nvidia CUDA code to point out the difference between using
the GPU versus the CPU, the various methods used in the GPU
model for such tasks as neighbor lists, the memory (shared,
global, texture models), and the uses of CUDA kernels. We then
present applications of the model to different water waves at
beaches. The waves are created within 2D or 3D wave basins,
with sloping beaches. The wavemaker is currently a sinusoidally
forced flap wavemaker, but that is easily changed. As the waves
shoal and break on the slope, the motion clearly becomes three-
dimensional. The surf zone vorticity will be discussed and the
coherent turbulent eddies will be identified using longshore and
cross-shore sections and the q-criterion of Dubief and Delcayre
[4] (2000).

I. INTRODUCTION
The introduction of the massively parallel graphic

processors (GPU) and particularly of the first compiler (NVidia
CUDA) allowing the programming outside of a strictly graphic
context of those processors has changed the game in terms of
numerical simulation.

Indeed a graphic card of the last generation has a
computational power of about 1TFlops and costs only 300 €. It
is therefore quite natural to use the GPU for scientific
computation and numerical simulation.

Regarding the hardware, one could consider the GPU as a
massively parallel computer accessing a global device memory,
holding hundreds of computing units employing a new
architecture called Single Instruction Multiple Threads (SIMT).
This architecture is akin to the Single Instruction Multiple Data
(SIMD) vector organisation. The NVidia GPU of the last

generation (G200) has 240 processors, and a device to device
memory bandwidth of about 140 Go/s for a computational
power of about 1 TFlop.

At this time, only NVidia distributes a C compiler
dedicated to those processors, which has a certain number of
restrictions, the most important ones being the impossibility of
writing recursive functions and the lack of dynamical
allocation in device memory. Also, we can only hope to obtain
optimum performance by conforming closely to the SIMT
scheme. Indeed, for compute bound operations if the scheme is
respected, except for some few exceptions, we are certain to
have a code whose performances scales linearly with the
number of processors. In addition, one must also acknowledge
that the memory bandwidth between the graphic card and the
host by the PCI bus is one-to-two order of magnitude lower
than the one for the device memory.

Those material constraints are making impossible the direct
transformation of a numeric code, even parallelized in a GPU
version. The use of GPU as a mathematical coprocessor is also
quite limited by the low bandwidth of the PCI bus.

Because of their structure, SPH are particularly well
adapted to the GPU. In fact, except in a few rare cases, notably
for the treatment of solid boundaries, the calculation of forces,
speed and positions is done rather in the same manner for all
particles, in a SIMT fashion.

In this context we have developed a GPU version of the
SPhysics code. To take the most advantage of the GPU
performances, the ensemble of the algorithms is executed on
the GPU, the transfers between host and GPU happening only
to record the results of the calculation.

II. PREVIOUS WORK
The first implementation of the SPH method totally on

GPU was realized by Kolb and Kuntz [5], and Harada et al. [6]
(both occurring before the introduction of CUDA). Earlier
work by Amada et al. [7] used the GPU only for the force
computation, while administrative tasks such as neighbor
search was done on the CPU, requiring no less than two host-
card memory transfers at each iteration.

Both Kolb and Kuntz and Harada used OpenGL and Cg (C
for graphics) to program the GPU, requiring knowledge of
computer graphics and also some tricks to work around the

4th international SPHERIC workshop Nantes, France, May 27-29, 2009

restrictions imposed by these languages. In particular, since
OpenGL doesn't offer the possibility to write to three-
dimensional textures, the position and velocity textures have to
be flattened to a two-dimensional structure.

III. SPH FORMULATION
We use almost the same formulation as in SPhysics that we

shall briefly recall. In all formulas below, h is the smoothing
length, W the smoothing kernel, rab = ra − rb , vab = va − vb ,

r = rab , Wab =W (r,h) and
b
∑ denotes the sum over the

neighbors of the particle a.

A. Smoothing kernels
We implemented four smoothing kernels: cubic spline,

quintic spline, quadratic and Wendland.

B. Continuity equation
dρa
dt

= mb
b
∑ vab∇aWab (1)

C. Momentum equation with artificial viscosity

dva
dt

= − mb
b
∑ Pa

ρa
2 +

Pb
ρb
2 +∏ab







∇aWab + g (2)

where∏
ab

is the artificial viscosity term [8] defined by :

 ∏
ab
=

−αcabµab

ρab
, if vab .rab < 0

0, otherwise









with µab =
hvab .rab

r2 + 0.01h2
, ρab =

1
2
ρa + ρb() and

cab =
1
2
ca + cb()

D. Momentum equation with laminar viscosity
For the laminar viscosity term we use the formulation given

by Morris et al. [9]:

dva
dt

= − mb
b
∑ Pa

ρa
2 +

Pb
ρb
2







∇aWab + g

+ mb
b
∑ 4ν0rab .∇aWab

ρa + ρb() r2
vab

 (3)

where ν0 is the kinetic viscosity.

E. Equation of state
Following Monaghan [1] and Batchelor [10] the

relationship between pressure and density is assumed to follow
the expression:

P = B ρ
ρ0








γ

−1












 (4)

where γ = 7 and B is chosen such that the minimum sound

speed is ten times greater than the maximum expected flow
speed [1].

F. Kernel corrections
We implemented a zeroth order and a first order Moving

Least Square (MLS) kernel correction used to periodically
reinitialize the density field.

Among that we also implemented the velocity gradient
correction proposed by Chen and Braun [11].

The MLS and Chen and Braun kernel corrections require a
matrix inversion. In order to avoid any attempt to invert a
singular matrix we use the following criterion: the matrix M is
inverted only if M k

> ε , k being the dimension of M and ε a
safety factor typically set to 0.01.

1) Zeroth order: Shepard Filter
The ‘Shepard Filter’ [12] is a straightforward correction

where the density field is periodically reinitialized using the
following equation:

ρa = mb
b
∑ Wab (5)

where

Wab =
Wab

mb

ρbb
∑ Wab

2) First order: MLS
The MLS approach developed by Dilts [13] is a first order

correction designed to exactly reproduce linear variations of
the density field. As for the Shepard filter, the density field is
periodically reinitialized using the following equation:

ρa = mb
b
∑ W MLS

ab (6)

where W MLS
ab is the corrected kernel evaluated as follow:

W MLS
ab = b(ra).rabWab

In 2D the correction vector b is given by:

b(ra) = A
−1

1
0
0

















where:

A =
mb

ρbb
∑ Wab

A

A =

1 xa − xb ya − yb
xa − xb xa − xb()2 xa − xb() ya − yb()
ya − yb xa − xb() ya − yb() ya − yb()2



















3) Chen and Braun gradient correction
The Chen and Braun gradient correction is a generalization

of the Bonnet and Lok [14] correction for the gradient of the

4th international SPHERIC workshop Nantes, France, May 27-29, 2009

velocity. It consist in replacing the term ∇aWab by Aa
−1∇aWab

where A is the matrix defined by:

Aa =
mb

ρbb
∑ ∇aWab ⊗ rba (7)

G. Boundary conditions
We implemented repulsive boundary conditions proposed

by Monaghan and Kos [15] using special particles generating a
short-range repulsive force according to:

f (r) =
D

r0

r







p1

−
r0

r







p2











r
r

, if r ≤ r0

0, if r > r0










 (8)

where r0 is the range of action, p1 = 12 and p2 = 6 and D is a
problem depending constant.

We also implemented open periodic boundary conditions.

H. Time integration
We use the Predictor-Corrector scheme. As an example, for

the velocity, the predictor step predict the midpoint:

va
n+1
2 = va

n +
Δt
2
dva

n

dt
 (9)

while the corrector step is:

va
n+1
2 = va

n +
Δt
2
dva

n+1
2

dt
 (10)

the value of v at the end of the step is then:

va
n+1 = 2 va

n+1
2 − va

n = va
n + Δt dva

n+1
2

dt
 (11)

The evolution of density and position are similar.

When using variable time-stepping, the time step is
calculated according to (Monaghan and Kos [15]):

Δt = 0.3min Δt f ,Δtcv()

Δt f = mina
h
fa
; Δtcv = mina

h

c +maxb
hvab .rab
rab
2

 (12)

We also implemented the XSPH correction given by
Monaghan [16].

IV. CUDA PROGAMMING MODEL

A. Hardware considerations
The CUDA enabled NVidia processors (modèles G80, G92

et G200) share the same hardware architecture (figure 1): each
processor is made up by a set of multiprocessors each one
containing eight processors.

Figure 1. Hardware organization

Each multiprocessor has four kinds of on-chip memories:

• a set of 32 bits registers per processor,

• a shared memory shared by all processors of the same
multiprocessor,

• a read only constant cache designed to speed-up reads
from constant memory,

• a read only texture cache designed to speed up texture
read. Textures are accessed via a texture unit
implementing various addressing and filtering modes
(like texture interpolation).

The device itself accesses a global memory space, located
on the board, the device memory.

B. Software considerations
CUDA is an extension of C programming language that

allows the programmer to write functions executed directly on
the graphic processor. Unlike other classic C functions, those
functions called kernels (not to be confused with SPH kernels),
are executed N times, in parallel by N different CUDA threads.
At this time, CUDA does not support recursive functions.

Those threads are organized in a grid containing an
ensemble of blocks. As a rule, the size of the grid is directly
linked to the size of the data to be treated. Those blocks are
processed by a multiprocessor. The number of threads per
block is limited by the number of registers and by the quantity
of shared memory used by the kernel. Each multiprocessor has
a special unit, the SIMT unit, in charge of spreading the threads
between the various processors. This architecture is related to
the SIMD architecture of the vectorial computers while being
less restrictive: two threads executed over two different

4th international SPHERIC workshop Nantes, France, May 27-29, 2009

processors can execute different instructions. However, this
comes at a cost, so it is recommended to restrict to the bare
minimum the conditional instructions leading to those
situations.

The access time to the memory depends as well of the type
of memory involved:

• the first access to the device memory has a latency of
400 - 600 clock cycles,

• access to shared memory and registers is generally a
zero extra clock cycle operation,

• constant cache and texture cache are cached memory,
so the access cost in the event of a cache miss is the
same that for the device memory, otherwise it just costs
one read from the cache.

The device memory bandwidth can be improved using
some special access patterns, called coalesced accesses (for
details see the CUDA Programming Guide). The thread
scheduler can hide the memory access latency if the kernel
contains sufficient independent arithmetic instructions that can
be issued while waiting for other memory access to complete.
Such kind of kernel is called compute bound kernel and
guaranties a linear performance scaling in respect of the
number of processors. In opposition a kernel involving mostly
memory accesses is called memory bound kernel and will not
scale with the number of processors.

The texture cache is optimized for spatial locality, so
threads of the same block reading texture addresses close
together will achieve a better performance.

The shared memory is shared by the threads of a block, and
cannot be used for inter-block communication.

There is no way to avoid read-after-write, write-after-read
or write-after-write hazards in device memory, so there are no
global variables safely accessible by all the threads of a grid.
CUDA provides Atomic Functions to perform safely read-
modify-write operations, but they are restricted to integers and
have a significant cost.

Summarizing, in order to obtain the best performance, we
can list three main issues:

• choose the most suitable kind of memory with the best
access pattern,

• restrict to absolute minimum conditional instructions,

• try to have a maximum of compute bound kernels.

V. SPH IMPLEMENTATION WITH CUDA

A. General overview
The code for our CUDA implementation of SPH exploits

C++ structures to clearly isolate the components. The CPU part
is composed of a Problem virtual class from which the actual
problems (dam break, piston, paddle, …) are derived. A
ParticleSystem class acts as an abstraction layer for the particle
system, taking care of CPU and GPU data structure
initialization and CUDA kernels calling. It exposes methods to
initialize data, run each simulation time step, and retrieve

simulation results for visualization (OpenGL image displayed
on screen and refreshed periodically as the model is running)
or on-disk storage (targa image format and/or VTU data file
written at a given interval).

Following the classical SPH approach, the algorithm for the
simulation time step can be decomposed into the following
four steps: neighbor search and list update, force computation,
velocity and position update. In addition, Shepard or MLS
filtering can be periodically done.

B. The Problem class
The Problem class is the user-exposed part of the code. In

order to run a new type of problem, the user must write a child
class of Problem in which it defines all the simulation
parameters (domain size, smoothing length, kernel type,
density at rest, coefficients for the equation of state,…) and
options (periodic boundary, variable time step, kernel
correction to apply,…). In addition it must fill an array with the
initial particle position, velocity and density. This is done by
implementing the virtual functions defined in the Problem
class.

Furthermore the user is provided with a set of geometrical
utility classes (for rectangles, polygons, cubes, …) with a
function allowing the user to fill the corresponding geometry
with particles.

C. Inside the ParticlSystem class
1) CUDA kernels development guidelines

The methods of ParticleSystem class handle the whole SPH
simulation by calling different CUDA kernels. All CUDA
kernels are written using the following guidelines:

• the arrays stored in the device memory are allocated
once, before the beginning of the computation,

• the particles data are stored in arrays with elements of
one, two or four floats in order to ensure in most of the
cases coalesced memory access. When it’s not possible
the array are bound to a one dimensional texture and
accessed via a texture fetch,

• except for radix sort used by neighbor search and
parallel reduction used for the adaptive time-stepping,
one thread processes one particle,

• the constants used in SPH formulation are stored in the
constant memory,

• we avoided any unnecessary runtime conditional
expressions arising from the simulation options by
using the templatization capabilities of the CUDA C
compiler (selection of the kernel type, viscosity type,
periodic boundary) or by writing multiples slightly
different versions of CUDA kernels (variable time
step, use of gradient correction, XSPH).

2) Data structures
All the data are stored in arrays in the device memory. The

more relevant are listed below:

• the pos arrays contain positions and masses,

• the vel arrays contain velocities and densities,

4th international SPHERIC workshop Nantes, France, May 27-29, 2009

• the forces array contains the accelerations and density
derivatives

• the neiblist array contains the indexes of all neighbors
of all particles.

Actually we have two pos and vel arrays for handling the
extra storage needed by the integration scheme.

3) Neighbor list construction
For the neighbor search, we use the algorithm described in

the Particles example of the CUDA toolkit (Green, 2008). The
computational domain is divided into a grid of linearly indexed
cells; each particle is assigned the cell index it lies in as a hash
value, and the particles are reordered by their hash value. The
neighbor list for each particle is then built by looking for
neighbors only in nearby cells. Four CUDA kernels are
involved in the neighbor list construction: hash calculation,
hash table sorting with a radix sort, particle reordering and the
neighbor list builder. We actually fix the maximum number of
neighbors per particle at compile time for simplicity and
efficiency reasons, as it allows the compiler to unroll any loop
involved, resulting in faster code and allowing us to avoid any
complex index tricks.

Rather than computing the neighbor list on the fly at each
iteration, we store the neighbor list in the neiblist array that
gets rebuilt periodically (typically every 10 iterations). This
choice requires more memory but results in faster execution,
since the neighbor search is a memory-bound operation and
therefore doesn't scale up with the computational power of the
GPU.

4) Force computation
The Forces CUDA kernel is devoted to the density

derivative and acceleration computation. It walks through the
neighbor list of the particle, accumulating the density
derivative and acceleration according to equations (1), (2) or
(3) and (8).

When using the Chen and Braun gradient correction, the
Forces kernel firstly computes the correction matrix (eq. 7),
inverts it, and proceeds to the density derivative and
acceleration computation with the corrected gradient. The
kernel has thus, at this stage, gone twice through the particles’
neighbor list.

 The resulting acceleration and density derivative are stored
in the forces array.

For adaptive time-stepping we perform a first parallel
reduction directly in the Forces kernel taking advantage of
shared memory. This allows us to find the value of the time
step (eq. 12) for the particles processed by the same thread
block. The maximum time step value is then found by calling a
parallel reduction kernel on the remaining data.

5) Time integration and positon update
The two integration steps in the Predictor-Corrector method

(eq. 9 and 10) are structurally very similar to a simple Euler
integration step. So we implemented a basic Euler kernel doing
such operation.

Then, a full integration step consist in:

• a call to the Forces kernel to compute density
derivative and acceleration at time step n,

• a call to the Euler kernel with an half-fed time step to
compute the positions and velocities at time step n +
1/2,

• a call to the Forces kernel to compute the corrected
density derivative and acceleration at time step n +
1/2,

• a last call to Euler kernel with a full time step to
complete the integration.

The position and velocities of boundary particles are
updated according to their type (fixed boundary particles or
moving boundary particles belonging to a gate, piston or
paddle).

In case of adaptive time-stepping each call to the Forces
kernel is followed by a call to a parallel reduction kernel. The
time step used at the next iteration is then set at the value of the
lower of the two time steps given by the two parallel
reductions.

6) Shepard and MLS kernel corrections
The Shepard and MLS kernel corrections are implemented

in two CUDA kernels periodically called during the
computation at a user-defined rate (typically every 20 – 40
time step).

As for the Forces kernel those kernels perform a walk
through (one for the Shepard correction and two for the MLS
correction) the neighbor list computing the corrected density
according to equations (5) or (6).

VI. BENCHMARKS
Table 1 shows the speedup of our implementation against

its execution on the CPU only. The table shows that the
neighbor list kernels do not scale linearly with the number of
processors in the GPU; this indicates that they are memory-
bound, which is expected given that their main feature is to
reorder memory structures based on the particle hash and that
this only requires a small number of mathematical operations.
For the force calculation procedure the speedup is considerably
closer to the optimal speedup, indicating that the corresponding
kernels are compute-bound, as expected.

The Euler step scales roughly linearly with the GPU
compute capability, indicating a strong computational bound,
but its advantage over the reference CPU is closer to the
memory-bound procedures. Reasons for this can be found in
the high memory access/operation ratio (5 memory accesses
for 4 operations) and in the highly vectorization structure of the
Euler computation that is exploited by the vectorized
instructions available on the CPU.

Fig. 2 shows the repartition of calculation time between the
different parts of the algorithm.

4th international SPHERIC workshop Nantes, France, May 27-29, 2009

TABLE I. SPEED-UPS BY GPU TYPE AND CODE PROCEDURE FOR GPU-
SPHYSICS CODE FOR 677,360 PARTICLES

GPU model (#number of processors)
Procedure

8600m (32) 8800GT (110) GTX 280(240)

Neighbor list 4.4 11.8 15.1

Force calculation 28 120 207

Euler step 3.2 13.7 23.8

Figure 2. Repartition of calculation time.

Note that the speedups in Table 1 are calculated against the
performance of the GPU code when run on a single CPU, an
Intel Core2 Duo at 2.5GHz. It must be noted that this code is
not optimal for CPU execution: for example, it does not
consider the symmetry in particle interactions, evaluating them
twice (once per particle instead of once per particle pair):
although the independent, repeated evaluation is almost a
necessity on the GPU, it is an unnecessary burden on the CPU;
optimizing it away would improve the CPU speed by a factor
of two, halving the speed-ups in Table 1.

VII. APPLICATIONS

A. Breaking waves
PaddleTest3D and a PaddleTest2D class were developed to

examine waves in a wave basin or tank, respectively. The
model problem involves generating boundaries for the
tank/basin, including the sidewalls and the bottom, using a Rect
(for rectangle) object, that creates a wall filled with boundary
particles. In 3D, the bottom consists of two rectangles—a flat
section, upon which the wavemaker is placed, and a sloping
beach section. The wavemaker is another Rect object that
stretches across the width of the tank and that moves with a
prescribed sinusoidal motion (in time) about a line on the
bottom. The paddle motion increases in amplitude linearly
with elevation from the bottom to create a flap wavemaker.
Finally, fluid particles are placed between the wavemaker and
the beach in layers spaced Δp apart in all three dimensions. Δp
is the initial particle spacing, which is related to the smoothing
length of the weighting kernels by h=1.3Δp.

It is straightforward to vary the tank geometry, including
the beach slope, and the wave properties, such as the wave
period and the amplitude of the paddle motion, which are
related [16]. This leads to different kinds of breaking waves on
the slope: spilling, plunging, or surging. Dalrymple and
Rogers [2] show that the SPH methodology is fully capable at
examining plunging breaking waves with splash-up.

The GPU-SPHysics code, once initiated, produces three
types of output. The first is real-time display of the waver tank

or basin, with the current wave field, using OpenGL. The
OpenGL image can be rotated about three axes, zoomed, and
the user has the option of displaying particle positions, or
pressure, or velocity mapped onto the particles. This provides
the user with confidence that the model is running correctly.
User-chosen periodic time-interval screen-capturing of the
OpenGL window results in saved images (.tga format).
Finally, also at a user-chosen periodic interval, data files are
written that capture particle positions, velocities, pressures and
densities at that instant. Currently these data files are in VTU
format.

Fig. 3 shows a simulation using the PaddleTest3D model,
but for waves in a narrow tank. This simulation was carried out
on an Nvidia Tesla card, using 4 million particles—near the top
limit that we can use, based on our current GPU-SPHysics
code. The straight lines in the figure denote the various
rectangles and polygons used to generate the wave tank
boundaries. The wavemaker is at the left and it creates
sinusoidal 2D waves—the model begins with the entire tank
filled with still water and then the wavemaker begins moving.
The water is shown in blue, while paler colors (and white)
denote water moving at higher velocities. Interestingly, as the
waves shoal on the sloping bottom and eventually break, the
streakiness of the water in the middle of the tank and
shoreward indicates that some three dimensionality develops in
the flow.

Another positive result of the test is that the intersection
between the dry beach and the water changes with time,
moving on average shoreward. This is a manifestation of
wave-setup, which is caused by the conservation of momentum
of the incoming waves being balanced during breaking by the
hydrostatic response of the surf zone.

Figure 3. Wave tank test of the 3D GPU-SPHysics code, showing wave
breaking and three-dimensional features developing in the breaking region.
Wavemaker to the left generates 2D motion and the beach is located on the
right.

Using a wider wave tank shows that GPU-SPHysics has some
likelihood of modelling nearshore hydrodynamics, such as
longshore currents and rip currents. In Fig. 4 the tank that is
as wide as it is long is shown. In this wider domain, the wave
crests are no longer straight but show some variation along the
beach (on the right).

4th international SPHERIC workshop Nantes, France, May 27-29, 2009

Figure 4. The wave basin is set up similarly to the wave tank in Figure 2.
Here red denotes the high velocity regions.

B. Dam break on a real topography
We developed a special version of the ParticleSystem

object dedicated to the simulation of flows on a real
topography. The mains differences with the previously
presented version are:

• for the neighbor list construction we divided the
domain into a two-dimensional grid,

• the Digital Elevation Model (DEM) describing the
topography is stored in a two-dimensional texture,

• we did not use any boundary particles to represent
topography, but instead generated the repulsive force
according to equation (8), i.e. in consideration of (i)
the distance between the particles and the terrain and
(ii) the associated normal direction.

We take benefit of the built-in linear texture interpolation in
order to have smooth elevations and normals for close particles
regardless of the resolution of the DEM (Fig. 5).

Figure 5. In blue the DEM data, in red terrain normals generated at a

resolution ten times less than that used for the DEM.

Figure 6. Evolution of the dam break at 0.5s, 5.03s and 9.16s.

Fig. 6 shows the evolution of the flow caused by a dam
break on a real topography. For that simulation we used a 1m
resolution DEM, an initial particle spacing of 0.2m and around
170000 particles.

4th international SPHERIC workshop Nantes, France, May 27-29, 2009

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
[1] Monaghan, J.J. Simulating free surface flows with SPH. J. Comp. Phys.,

110, pp. 399- 406, 1994
[2] Dalrymple, R. A. and Rogers, B. D. Numerical Modeling of Water

Waves with SPH Method. Castal Engineering. 53(2-3), pp 141–147,
2006.

[3] Hérault, A., Dalrymple, R.A. and Bilotta, G. SPH on GPU with CUDA.
J. Hydraulic Research, 2009, in press.

[4] TODO.
[5] Kolb, A. and Cuntz, N. Dynamic particle coupling for GPU-based fluid

simulation, Proc. 18th Symposium on Simulation Technique, pp 722-
727, 2005.

[6] Harada, T., Koshizuka S., and Kawaguchi Y. Smoothed Particle
Hydrodynamics on GPUs. Proc. of Computer Graphics International, pp
63–70, 2007.

[7] TODO.
[8] Monaghan, J. J. Smoothed Particle Hydrodynamics. Annual Rev.

Astron. Appl., 30, pp543–574, 1992.
[9] Morris, J., Fox, P., and Zhu, Y. Modeling low Reynolds number

incompressible flows using SPH. Journal of Computational Physics,
136, pp 214–226, 1997.

[10] Batchelor, G. K. Introduction to fluid dynamics. Cambridge University
Press, 1974.

[11] Chen, J. K., Braun, J. E., and Carney, T. C. A corrective Smoothed
Particle Method for boundary value problems in heat con- duction.
Computer Methods in Applied Mechanics and Engineering, 46, pp 231–
252, 1999.

[12] Shepard, D. A two dimensional function for irregularly spaced data. In
ACM National Conference, 1968.

[13] Dilts, G. A. Moving-Least–Squares-Particle Hydrodynamics – I.
Consistency and stability, Int. J. Numer. Meth. Engng, 44, pp 1115-
1155, 1999.

[14] Bonet, J. and Lok, T.-S. L. (1999). Variational and momentum
preservation aspects of Smoothed Particle Hydrodynamics formulations.
Computat. Methods Appl. Mech. Engineering., 180, pp 97–115, 1999.

[15] Monaghan, J. J. and Kos, A. Solitary Waves on a Cretan Beach. J.
Waterway, Port, Coastal and Ocean Engineering., 125, pp 145–154,
1999.
[16] Dean, R.G. and Dalrymple, R.A. Water Wave Mechanics for
Engineers and Scientists, World Scientific Press, 199

