
GPU Memory

• Local registers per thread.
• A parallel data cache or shared

memory that is shared by all the
threads.

• A read-only constant cache that
is shared by all the threads.

• A read-only texture cache that
is shared by all the processors.

• A local cached memory like
registers

Memory access:100 times more
time to access local/global
memory. Maximize shared/
register memory.

CUDA Memory Types
Global memory

Slow and uncached, all threads

Texture memory (read only)
Cache optimized for 2D access, all threads

Constant memory (read only)
Slow, cached, all threads

Shared memory
Fast, bank conflicts; limited; threads in block

Registers
Fast, only for one thread

Local memory
 For what doesn’t fit in registers, slow but cached, one thread

Variables

Access Penalty

Memory
Registers:
The fastest form of memory on the multi-processor. Is only accessible by the thread.
Has the lifetime of the thread.

Shared Memory:
Can be as fast as a register when there are no bank conflicts or when reading from
the same address. Accessible by any thread of the block from which it was created.
Has the lifetime of the block.

Constant Memory:
Accessible by all threads. Lifetime of application. Fully cached, but limited.

Global memory:
Potentially 150x slower than register or shared memory -- watch out for uncoalesced
reads and writes. Accessible from either the host or device. Has the lifetime of the
application—that is, it persistent between kernel launches.

Local memory:
A potential performance gotcha, it resides in global memory and can be 150x slower
than register or shared memory. Is only accessible by the thread. Has the lifetime of
the thread.

Where to declare variables?

Can Host access?

In kernel:

register
local
shared

Outside of any function:

global
constant

yes no

Global Memory: DRAM on card

Found by deviceQueryDrv; I have 1024 Mb

Declared outside of any function

__device__ int globalArray[256];

Assigned by cudaMemcpy

 cudaMemcpy is blocking transfer; host thread waits until transfer complete

or

 int *myDeviceMemory = 0;
 cudaMalloc(&myDeviceMemory, 256 * sizeof(int));

Global Memory
CUDA streams are a sequence of operations that execute on the device in the order
they are issued by the host. Different streams can interleave operations.

When no stream specified, the default (null) stream is assumed.

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a)
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

 All on the default stream. Kernel call waits until cudaMemcpy is complete.
increment kernel has to complete before the cudaMemcpy to the host is started.

Alternatively:

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a)
myCpuFunction(b) //this function will run while the DeviceToHost memcpy occurs
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

Global Memory
Asynchronous transfer

Using pinned memory with cudaHostAlloc, then
 cudaMemcpyAsync is a non-blocking version of cudaMemcpy.
 Requires using a stream ID.

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0)
kernel_function <<<grid, block >>>(a_d);
cpu_function();

kernel function uses default stream 0, so no synchronization required as kernel uses
default as well. Same as before.

cpu_function does not wait for memory transfer nor kernel_function to finish.

Concurrent copy and kernel execution
 Availability: DeviceQueryDrv:
“Concurrent copy and kernel execution: Yes with 1 copy engine(s)”

Compute_capability > 1.1

cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, stream1);
kernel<<<grid, block, 0, stream2>>>(otherData_d);

See http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

Coalesced Global Memory Access
Threads in a block are computed a warp at a time (32 threads).

Global data is read or written in as few transactions as possible by combining
memory access requests into a single transaction . This is referred to the device
coalescing memory stores and reads.

Every successive 128 bytes can be accessed by a warp (or 32 single precision
words).

All 32 reads done in one step. So blockDim.x multiples of 32 better.

Non-aligned Memory
Not in successive 128 blocks of memory; twice as long to read

Constant Memory
For data that does not change over the course of the computation. It is read only.

64k memory available on my machine (see deviceQueryDrv), but it is cached, so
there is only one clock cycle to read as opposed to 100+ for global memory

Using constant memory: Declare it outside of main()

__constant__ float cdata; //available in all scopes

To get numbers into constant memory variable cdata, use

 cudaMemcpytoSymbol((const char * symbol, const void * src, size_t count ,
 size_t offset=0, enum cudaMemcpyKind)

Best if all threads in warp read the same constant data, otherwise slower.

Constant Memory
deviceQueryDrv; I have 65536 bytes (64 kB)

Declare outside of any function
__constant__ float var; //available in all functions

Note: constant memory is available to all threads, like global memory; however, the
data is cached.

As fast as a register if all threads read same address.

//copy data from host to constant memory in main():
cudaMemcpyToSymbol (var, &host_var, data_size);

//var is available to kernels
__global__ void kernel (float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N)
 {
 a[idx] = a[idx]* var;
 }
}

Class Problem

Write a GPU program to calculate the potential energy of N particles. The
particles have random vertical positions between 0 and 100 m and the mass
of each particle is the same (m = 0.2 kg).

N=2048
g= 9.81m/s2 , put into constant memory

Note: #include <stdlib.h> provides rand() on host

(float) rand() %100 should give you a good random elevation

NOTE: rand() by itself is repeatable;
adding srand(time(NULL)) first, will randomize rand(); also #include <time.h>

PotentialEnergy.cu

Unified Memory: CUDA 6.0
Existing model:

Allocate memory on host
Allocate memory on device
Copy data from host to device
Operate on the GPU data
Copy data back to host

Unified memory model: CPU GPU CPU GPU

Allocate memory (same to CPU as malloc; same to GPU as cudaMalloc)
Operate on data on GPU

NOTE: Linux or Windows only, right now

New memory model : CUDA 6+
int N = 2048;
float * data;

cudaMallocManaged(&data, N);

…..generate data

kernel<<<….>>> (data, N)

cudaDeviceSynchronize();

// Synchronize is to get GPU to finish before doing anything with the data on CPU

cudaFree(data);

———————————————

See PotentialEnergyUnifiedMem.cu as compared to PotentialEnergy.cu

NOTE: no d_data, same data on both devices

PotentialEnergyUnifiedMem.cu

