The Impact of Biogenic VOC Emissions on Tropospheric Ozone Formation in the Mid-Atlantic Region

Michelle L. Bell

Yale University

Hugh Ellis Johns Hopkins University

Air Pollution 2005 May 17, 2005

Tropospheric Ozone (O_3)

- Secondary pollutant formed by complex chemical reactions including NO_x and Volatile Organic Compounds (VOCs)
- Linked to human health effects including decreased lung function and increased emergency room visits
- Subject to NAAQS under the U.S. Clean Air Act
- Estimating O₃ concentrations important from a public health and regulatory standpoint

Attainment of 8-Hour Standard

Source: EPA Greenbook

Air Quality Modeling

Inputs:

Meteorology Wind Precipitation Solar Radiation

Emissions: Transportation Industry Biogenic

Land-Use

Terrain

Models-3 Framework

Sample Output

Case Study Area (Mid-Atlantic, USA)

12-km Resolution Domain

42 Rows 69 Columns 2898 Cells

4-km Resolution Domain (Maryland)

45 Rows 60 Columns 2700 Cells

Model Evaluation

- How well does the modeling system perform?
- Are ozone estimates reasonable approximations of monitor values?
- Several approaches applied comparing model estimates to monitor measurements

(Bell & Ellis Atmospheric Environment 2004)

• E.g. Mean bias = 6.2 ppb

$$D = \frac{1}{N_T} \sum_{i=1}^{N} \sum_{j=1}^{H_i} (c_o(i, j) - c_p(i, j))$$

Comparison of Values at Hour of Maximum Concentration

July 13 to 15, 1995

Comparison of Model Estimates and Measurements

Location: Millington, Maryland

6/26/90:12 6/27/90:00 6/27/90:12 6/28/90:00 6/28/90:12 6/29/90:00 6/29/90:12 6/30/90:00

Local Time

- Monitor Measurements
- Model Estimates

Comparison of Model Estimates and Measurements (8-hour average)

Modeling Simulations

- 27June1990 (h 00) to 30June1990 (h 00) (GMT)
 - High ozone episode
- Emissions Scenarios
 - Baseline (actual emissions)
 - 100% increase in biogenic emissions
 - 100% increase in biogenic and motor vehicle emissions

Baseline Scenario (Maximum O₃ Concentration)

ppb

Scenario Comparisons

- Ozone Concentrations
 - Maximum hourly average, maximum 8hour average, daily average, episode average, domain-wide average, etc.
 - Absolute values, increases, relative increases
 - Comparisons are affected by what pollution metric is used (Bell & Ellis JAWMA 2005)

Scenario Comparisons – Some Results

- All emissions scenarios had higher O₃ in some areas/times and lower O₃ in others
- The increase in motor vehicle emissions had less of an impact than the same relative % increase in biogenic emissions.

Rural vs. Urban Areas

VOC vs. NO_x- sensitivity

- 13July1995 (h 00) to 15July1995 (h 00) (GMT)
- Scenarios
 - -Baseline scenario (actual emissions)
 - VOCs and NO_x increased 25%
 - VOCs only increased 25%
 - $-NO_x$ only increased 25%

Areas for which the VOC increase always resulted in higher O_3 than the NO_x increase.

Areas for which the NO_x increase always resulted in higher O_3 than the VOC increase.

Concluding Thoughts

- +Air pollution modeling can be a useful tool for many purposes
 - Must believe in results (validation)
- Results
- Demonstrate the importance of biogenic VOCs for the Mid-Atlantic Region of the U.S.
- Show that generalizations such as VOC-sensitivity or NO_x -sensitivity are over simplifications

Thank you