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Summary of Findings 
 
The purpose of this portion of the project is to link electricity demands with electricity sector 
emissions, with a focus on NOx.   Climate change will alter the level and timing of 
electricity demands, as well as the thermal efficiency of electricity generating units.   With a 
given capital stock of generating plant (short run analysis), this will change their operations 
and emissions.   Even in the presence of seasonal or annual emissions caps, emissions might 
then increase during the warmest days when ozone episodes are most likely to occur.  In the 
long run, the mix and amounts of various types of generation technologies will adjust, and if 
climate change occurs, the resulting generation plant will be different than if climate change 
does not occur.   This has further implications for the timing and amount of emissions.   This 
portion of the research project developed and demonstrated methods for obtaining temporal 
and spatial distributions of NOx emissions from power plants, and for quantifying the effects 
of climate change scenarios on those distributions.  
 
In Section 1 of this report, we provide background on the analyses, as well as summarize 
data sources.  In Section 2, we describe the methodology used to assess the effects of 
climate warming assuming short-run (fixed capital) conditions for the power generation 
sector; this is an emissions- and transmission-constrained representation of the power 
market for the mid-Atlantic and Midwest states.  Generation plant and demand conditions 
for the year 2000 were used in that analysis.  That section also summarizes the results of the 
analysis.  In Section 3, we turn to the issue of interannual variability of climate, electricity 
demands, and emissions.   Most energy models, when used in climate impact analyses, 
assume a “typical” or “average” year.  However, interannual variability is very important; 
because of the nonlinear relationships between temperatures, emissions, and their impacts, 
the average impact on air quality over a number of years may be quite different (and higher) 
than the impact on air quality in an average year.  In Section 4, the procedure used to 
calculate long run (variable generation plant) scenarios that adapt to changing climate is 
described, along with selected results.   Appendix I summarizes the procedure used to 
translate the hourly emissions outputs from the electricity generation simulation model into 
the script files that can be used by the SMOKE module of CMAQ.  Appendix II lists 
publications and conference presentations from this portion of the project, and Appendix III 
summarizes two journal articles resulting from this project that describe the short run 
models and some analyses of the interaction of oligopolistic generator behavior and 
emissions. 
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The major findings concerning the short- and long-run effects of climate change on 
pollution emissions from the power sector are summarized as follows: 

 
1.   In the short-run, climate change, which is characterized as an increase in ambient 

temperatures, can affect power system in two ways:  increasing power demand 
(demand effect) and degrading generation heat rates (efficiency effect).  According to 
our analysis, for a 2°F increase in the ambient temperature, the former is greater than 
the latter by an order of magnitude.  For instance, for one ozone episode analyzed, the 
demand effect contributes a 5% increase in NOx emissions during ozone episodes, 
while the efficiency effect accounts for less than 0.1%.  These increases occurred even 
though emissions were assumed to be subject to a seasonal cap.  The greatest emission 
impacts occur in the hours when demand is already high; because those are the hottest 
days of summer, those are also the days when ozone episodes are most like to occur 
(Section 2).   

 
2.   Besides the short-run demand and efficiency effects, climate change has long run 

effects on two categories of capital stock: energy-using equipment (e.g., size and 
numbers of air conditioners) and the mix and amount of generation plant (e.g., the 
amount of peaking gas-fired capacity versus baseloaded coal capacity).  The effects on 
consumer equipment choices are examined in the GWU portion of this final report.  
Here, we focus on effects on generation investment, and the implications for emissions.  
We used a combination of the GWU short-run analyses and long run National Energy 
Modeling System analyses to analyze the effect of a 415 oF-day increase in cooling 
degree-days upon electric load distributions in the year 2025.  As a result, we project 
the highest (peak) hourly demand increases by 11%, compared with just a 4.5% 
increase in the summer average demand.  The CDD increase was obtained by 
analyzing selected years from the GISS GCM/MM5 scenarios for the 1990s and 2050s 
climates.  The substantial increase in the peak period demand has two implications for 
the power system and its emissions.  First, more peaking units such as combustion 
turbine need to be installed to meet high demand in the peak hours.  Second, an 
increase in the emission during high-demand hours could worsen regional air quality 
at precisely those times when ozone episodes are most likely to occur.   For a given 
summer hour, the correlation between temperature and emissions is around 50% to 
70%.  Our results imply that the aforementioned 15% increase in peak demand 
translates into a 33% increase in the peak pollutions emissions in the long run, even 
when there is a seasonal cap on emissions (Section 4).   

 
3.  There could be significant inter-year variability associated with NOx emissions during 

high-demand hours in the long-run.  Based of GISS simulations of two years under 
1990s climate conditions and another two years under 2050s conditions, we find 
significant variation in the distribution of year-to-year peak emissions, even under the 
restrictive assumption that there is no interannual emissions banking.  Higher peak 
ambient temperatures are associated with higher pollution emissions (Section 3 & 4).   
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1. Background and Data Sources 
 
1.1 Electricity Market Geographical Coverage 
  
Because of the fine geographic scale required for emissions inputs to CMAQ, our power 
market simulation model is regional rather than national in scope.  Our analysis included 
generation units in two North American Reliability Council (NERC) regions: MAAC (Mid-
Atlantic Area Council, also called the PJM Interconnection)1 and ECAR (East Central Area 
Reliability Coordination).  MAAC covers four states (Maryland, New Jersey, Delaware and 
Pennsylvania) and District of Columbia.  ECAR includes several states located upwind of 
MAAC, including Ohio, Kentucky, Indiana, and parts of Michigan. However, state 
boundaries are rarely coincident with power control areas (PCA) in ECAR, and we only 
included PCAs that have most of their service territory within these states.  
 
1.2 Generating Characteristics 
 
We replied on several sources for data on generation.  In general, power generation 
simulation  models (often called “production costing models”) require details on engineering 
and cost inputs, such as heat rate, fuel cost, capacity, primary mover, and nonfuel variable 
operation and maintenance costs.  The primary source was from Energy Information 
Agency (EIA) of the US Department of Energy.   
 
The short run analysis represents the generation plant in place in 2000.  In summary, the 
short run generating dataset comprises with 1,453 generating units, of which 731 
generating units were located within PJM, and remaining were located in ECAR.  The 
total capacity accounting for the forced outage rate in our model was 114,685MW.  
 
The marginal production cost in our analyses was represented as the sum of fuel cost, SO2 
permit costs, and non-fuel variable operation and maintenance expenses.  Fuel costs are 
exogenous and depend on plant location and type.  Since SO2 allowances trading is national 
in scope, we treat costs associated with SO2 allowances as an exogenous component of 
production cost.  In contrast, under the NOx SIP call, NOx trading is more regional in nature, 
and so we explicitly cap NOx emissions in the region, which makes the shadow price of NOx 
allowances endogenous to the solution.2  To properly account for differences in the 
reliability of various types of generating units, we included forced outage rates in the 
model by “derating” capacity by the average outage rate.  The value of forced outage 

                                                 
1 The geographic coverage of PJM Interconnection was the same as MAAC in 1998.  But, over the past few 
years, PJM has grown substantially.  In 1998, it only included four states: Maryland, New Jersey, East 
Pennsylvania, Delaware and District of Columbia in the mid-Atlantic region.  Now, its coverage has 
expanded to comprise 13 states plus DC.  As a result, besides the original territory, it now serves a total of 
51 million customers with a peakload of 131,330 MW, approximately two and a half times as much load as 
in 1998. 
2 Of course, the Clean Air Interstate Rule proposed in 2005 by USEPA would make NOx more of a national 
market.   So as not to overstate the effect of climate change on emissions in the study region, we assume 
that the region does not import allowances from elsewhere during higher demand (generally warmer) years, 
which would be consistent with assuming that during those same years, other regions also have higher 
allowance requirements and so do not have additional allowances to spare.  
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depends on prime mover and size of plants, and the data was drawn from North American 
Reliability Council (NERC) (NERC, 2005).   
 
Although the EIA dataset contained information about emission rates for many units, for 
some units that lack such information we derived emission rate from other sources.  In 
particular, we used data from the USEPA (Environmental Protection Agency) Integrated 
Planning Model (IPM) (USEPA, 2005d) and the Emission and Generation Resource 
Integrated Database (eGRID) (USEPA, 2005c).  If the information from USEPA IPM and 
eGRID remained inadequate or inconsistent for a given source, we cross validated them 
with these in the USEPA Continuous Emission Monitoring Data (CEMS) (USEPA, 
2005e).   
 
1.3 Transmission Network 
 
One crucial step in developing the models was to have an adequate representation of the 
transmission network.  The presence of network constraints can greatly affect the total 
cost and emissions of power generation, as well as their spatial distribution.  Including 
the high voltage (345 kV and above) network allowed us to take into account the effect of 
network congestion in power generation and emissions. 
 
The main source for transmission network was PowerWorld (PowerWorld, 2005).  The 
PowerWorld data set contains information about network topology and transmission 
limits.  In our model, the entire PJM system (1998 footprint) is represented by a 14-node 
system with 18 arcs.  The ECAR system is only represented as a single node, with two 
arcs connecting to PJM region.  The reason is while there is significant congestion within 
PJM but less within ECAR region.  Furthermore, we are focused more on ozone impacts 
on the eastern seaboard, so more detail on that region’s power system is appropriate.  The 
congestion between PJM and ECAR will be captured by the two connecting arcs between 
two regions.   
 
In order to correctly represent network congestion, we split some of the PCAs into 
several nodes so that congestion within PCAs can be represented.  To identify the 
location of each generator and assign each generator to a node in the network, we use 
information from USEPA eGRID or lat-long information.  Figure 1 plots the resulting 
transmission network in our analysis.  In particular, four PCAs have been spilt into more 
than one node: METED (Metropolitan Edison), JCPL (Jersey Power and Light), PPL 
(Pennsylvania Power & Light) and BGE (Baltimore Gas & Electric).  
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Figure 1: The PJM and ECAR Transmission Network 

 

1.4 Ownership 
 
While ownership is not crucial in our competitive market analysis, it becomes important 
in our companion analyses, where we look at possible strategic interaction of 
oligopolistic power producers in the electric and emissions allowances markets within 
PJM region (Chen and Hobbs, 2005; Chen et al., 2005).   The primary source of 
ownership data is EIA Form 860 (EIA, 2005).  For units not in the EIA 860, an internet 
search or personal contact was used to confirm ownership.  To ensure an appropriate 
representation of the potential of market power under the current ownership, we assume 
that operational decisions (generation and sale) are controlled by the parent company, 
replacing any subsidiaries with the corresponding parent company.  For the 29 units 
jointly owned by more than one incumbent company, we treat each as a set of multiple 
units by splitting capacity in proportion to ownership percentage.  Other assumptions, 
such as assigning control to the owner with majority ownership, could instead be applied 
to study market power in the presence of partial ownership (Amundsen and Bergman, 
2002) . 
 
1.5 Loads 
 
The simulation period was entire year of 8,760 hours, where the ozone season of 
comprising 3,672 hours was separate from others.  The annual load, i.e., load duration 
curve, was approximated by several block systems.  The number of blocks in the model 
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was the balance between the considerations of results’ precision and the computational 
complexity.  For instance, in the approximation of the three-day episode analysis, a block 
could correspond to one hour.  Hourly load data for each individual PCA or node were 
obtained from the PJM and ECAR website, as are boundary conditions (net imports). 
 
 
1.6 NOx Allowances 
 
The number of SIP Call allowances allocated to the study region an important issue since 
it affects operations in the short-run (due to emissions dispatch in response to NOx prices) 
and capacity mix in the long-run (as high emission capacity is penalized by the market, 
and becomes a less attractive investment).   
 
For the short-run simulations, we relied on EPA annual compliance reports for tradable 
permit data (USEPA, 2005b).  A total of 131,440 permits were available at the end of 
2000 for affected facilities in the 1998 PJM region: Maryland, Pennsylvania, New Jersey 
and Delaware.  There were 109,227 permits allocated in 2000 by the NOx budget program, 
and 22,163 permits were carried over (banked) from previous years.  Only 92,107 permits 
are assigned to power plants; the remaining permits, which are owned by other industrial 
sources, are left out of our analysis.  Consistent with empirical observation of generator 
behavior in PJM, we assumed only 80% of available permits are used for compliance 
purpose, and the remaining 20% are banked for future use during the short run (2000) 
simulation.  Thus, in the short-run analysis, the amount of available allowances for PJM 
region is 73,686 tons.  A similar approach is used to estimate the number of the available 
NOx allowances for the ECAR region.  
 
For the long-run analyses, the tightness of the NOx cap is based on the CAIR (Clean Air 
Interstate Rule) (USEPA, 2005a).  The table below 
Table 1 

Table 1: NOx Cap for SIP Call and Clean Air Interstate Rules (CAIR) [tons] 
 SIP CAIR 
ST 2003-2007 2009-2015 2015- 
DC 207 112 94
DE 4,306 2,226 1,855
IN 7,088 45,952 39,273
KY 19,654 36,045 30,587
MD 14,519 12,834 10,695
MI 25,689 28,971 24,142
NC 31,212 28,392 23,660
NJ 9,716 6,654 5,545
OH 45,432 45,664 39,945
PA 47,224 42,171 35,143
VA 17,091 15,994 13,328
WV 26,859 26,859 26,525
Total 265,078 312,506 267,985
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2. Short-run Transmission-Constrained Emission Simulation 
The research objective of this subtask is to translate the short-run climate-sensitive power 
demands estimated by the research group at GWU into the hourly pollutions emissions. 
This short-run analysis focuses on Pennsylvania-Jersey-Maryland (PJM) power system, 
and assessed the impact of climate change on hourly emissions a three-day ozone episode, 
while ensuring that total emissions during the ozone season satisfy the assumed cap..  
 
2.1 Analysis Procedure 
 
Figure 2 provides a flowchart to describe the procedures that we used for the short-run 
three-day episode analysis.  The details of each step are explained in the next few 
paragraphs. 
 

Step 1: Determine three-day ozone episode as the consecutive 
three days with the highest moving average in temperature 

Hourly Load estimated by 
GWU short-run load 
forecast models 

Step 2: Define temporal load aggregations by model node based 
on the estimated load from GWU 

Short-run linear 
programming (LP) least cost 
dispatch models 

Step 3: Generate hourly pollutions emissions 

 
 

Figure 2: Flowchart for short-run transmission-constrained emissions analysis 

 
The details of each step are summarized as follows: 
   
Step 1: We assessed candidates for ozone episodes by looking at 3-day moving 
averages of temperature during July and August of 2000 in two cities in the PJM 
region: Philadelphia and Washington DC.  With a moving average of 82˚ F, Aug. 7 to 
Aug. 9, 2003 is selected as our episode period.  
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Step 2: In order to include the regional NOx cap in our model, our analysis considers 
the ozone season of May 1 to Sep. 30, 2000, a total of 3,672 hours.  Excluding the 3-
day ozone episode period considered in the first step, the load distribution of 
remaining 3,600 hours is approximated by five load periods.  The peak period has 60 
hours, while the other periods have 885 hours each.  Together with the 72 periods 
(one for each hour) for the episode days, our model includes 77 periods.  These loads 
are disaggregated to each of 14 nodes in an aggregated PJM network, based upon the 
GWU analysis. 
 
Step 3: Using the load blocks generated in the second step, we then applied a short-
run least-cost linear programming (LP) dispatch model to simulate the hourly 
pollutions emissions in the PJM region during five-month ozone period.  The 
assumed sensitivities of generator characteristics (MBTU/kWh heat rate and MW(e) 
capacity) to temperature changes are that an 0.075% increase in the heat rate and an 
0.4% decline in available capacity for per 1 F° in temperature for gas turbines, 
respectively.3 To ensure that the market structure that we simulated in the LP models 
is close to the reality, we also performed analysis using two alternate market structure 
assumptions: oligopolistic Cournot and Stackelberg.4  

 
2.2 Simulation Model 
 
 In this subsection, we present the mathematical formulation of the LP short-run 
least-cost dispatch model that we used to simulate short-run power operation.  We begin 
with the definition of notations, followed by the explanation of objective function, 
constraints and solution procedure.5  
 
2.2.1 Definition of Notation. In the following presentation, the parameters are in 
capitalized letters; primal variables are in alphabetic letters; and dual variables are in 
greek letters.  
 
                                                 
3 Based on F.J. Brooks (Brooks, 2000), Figure 9 shows that the heat rate is 96% of nominal at 0 º F and 
105% of nominal at 120 º F.  Since the curve is linear, this translates into a sensitivity of 0.075% per º F.  
Degradation in steam plant efficiencies with increases in ambient temperatures were approximated based 
on Carnot efficiency calculations.   The result is a heat rate degradation of 0.068% per oF, very close to the 
turbine values. Capacity effects were estimated by comparing summer and winter capacities from the 
Energy Information Agency NEMS data set, and assuming a 30 degree average temperature difference 
between the seasons. 
4The details of the analyses using alternative market structure are not presented here, but can be found in 
the two published articles included in Appendices A and B, i.e., (Chen and Hobbs, 2005) and (Chen, Hobbs 
et al., 2005).  In general, we concluded that the PJM market during 2000 was relatively competitive; and 
the market simulated using LP least-cost dispatch models is a good approximation of actual market 
conditions.  Or, equivalently, the oligopolistic Cournot prices were closest to prices assuming that 
generators in PJM were heavily forward contracted, which dampens incentives to restrict output and raise 
prices in the spot energy market.   This was indeed the case with PJM generators in 2000, which accounts 
for the relative competitiveness of that market relative to California in that year.  
5 The use of linear programming to simulate generation system operation goes back to the 1950s and 
Electricite de France, see (Turvey and Anderson, 1997).   The embedding of linearized DC load flow 
models to represent transmission flows ((Schweppe et al., 1988) , Appendix A) is more recent, e.g., (Ji and 
Hobbs, 1998). 
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Table 2: Set and index definitions for short-run transmission-constrained model 

Indices/Sets Description 
t T∈  Time periods, or blocks 

OTCt T∈  Periods under ozone cap 
,i j I∈  Nodes in network 

k K∈  Constrained transmission interface in 
network 

h H∈  Generators 
( )H i H⊂  Set of generators located in node i 
OTCH H⊂  Set of generators whose emissions are 

included in NOx program 
 

Table 3: Parameter definitions for short-run transmission-constrained model 

Parameters Unit Description 
hC  [$/MWh] Marginal production cost of generator h  

hX  [MW] Production Capacity of generator h  

hE  [tons/MWh] Emission rate of generator h  

ihFOR  [] Forced outage rate of generator h  

kT  [MW] Capacity limit for interface k  

itL  [MW] Demand of power at node i in period t  

tB   
 

[hours] Duration of period t in the load duration 
curve approximation  

xNO  [tons] Seasonal NOx emission cap  

kiPTDF  [MW/MW] Power transfer distribution factor for a 
unit power injection at an arbitrage hub 
node and unit withdrawal at node i for 
transmission interface k  

itZ  [MW] Power imported from outside the study 
region to node i in period t  
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Table 4: Variable definitions for short-run transmission-constrained model 

Variables Unit Description 
ihtx  [MW] Output level of generator h in period t 

its  [MW] Sales of power at node i in period t 
Np  [$/ton] NOx allowances price 

E
itp  [$/MWh] Power price at node i in period t 

htρ  [$/MW] Dual variable of capacity constraint for 
plant h at period t 

ktλ  [$/MW] Dual variable of transmission constraint 
for flowgate k 

itw  [$/MWh] Wheeling charge of bringing 1 MW of 
power from hub to node i 

ity  [MW] Power delivered from hub to node i in 
period t.  This is net power injected at 
node i 

 
 

2.2.2  Mathematical Model.  The short-run transmission-constrained model presented 
below only covers the summer ozone period (called STM-summer).   The model consists 
of an objective function (cost) to be minimized (equation (1)), a set of variables (defined 
above) whose values are chosen to minimize that function, and a set of constraints (2)-(7) 
that define what values of the variables are feasible.  Dual variables (shadow prices) for 
each constraint are shown to the right of the constraint in parentheses. 
  
PROBLEM STM-SUMMER: 

,h
t h htx h t

MIN B C x∑          (1) 

subject to: 

(1 ), ,ht h hx X FOR h≤ − ∀ t         ( htρ ) (2) 

( )
ht it it it

h H i

x z s y
∈

− − =∑         ( )  (3) ,i t∀ itw

t it t itB s B L≥ ,i t∀         ( E
itp )  (4) 

,OTC
t h ht x

h H t

B E x NO
∈

≤∑          ( Np )  (5) 

 
it ki ki

y PTDF T≤∑          (,k t∀ ktλ ) (6) 
 

, 0it ihts x ≥  
 
The objective function in STM-summer is to minimize the overall production cost, which 
is comprised of fuel, variable operation and maintenance costs.  There are five sets of 
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constraints.  First, the energy output xht is less than or equal to the plant’s capacity, 
derated for the forced outage rate.  The second constraint states that power flow in each 
node has to be balanced.  That is, the output minus the sum of the import and nodal 
consumption has to be equal to the net withdrawal/injection at that node.  Third, the 
demand has to be met at each node in every period t.  The fourth constraint says that the 
total NOx emissions need to be no more than the cap.  Finally, the power flow in through 
each transmission flowgate k cannot exceed its thermal capacity at each period t.  The 
term PTDFki is called power transfer distributor factors, which are a matrix that governs 
the flow in the network.  It is derived from Kirchhoff’s voltage and current laws, 
assuming there are no transmission losses in the network.  The solution from STM-
summer gives the output level of each generator and power flow in the network at each 
period t. This solution can then be used to calculate hourly emissions.  
 
2.2.3 Solution Procedure. The STM-summer model is formulated in the GAMS 
modeling environment (General Algebraic Modeling System).  It is then solved using the 
LP solver CPLEX (Brooke et al., 1998).    
 
2.2.4 Short-Run Example Results. In this section, we summarize the impact of a 2 ˚ F 
increase in ambient temperature on pollution emissions for the ozone season, assuming 
that the mix and amount of generation capacity does not change. In particular, we look at 
the overall impact on entire ozone season as well as the hourly emission change during 
the hypothesized three-day episode.  
 
The load sensitivity shows that the overall impact on ozone season demand is an average 
of 4.3% increase of load over 2000 ozone season as a result of a 2 °F increase in ambient 
temperature, or 2.15% per °F. This increase in demand leads to no change of the total 
NOx emissions, since, by definition, the seasonal emissions are capped. However, 
substantial impacts on fuel cost are observed among scenarios. The increase in fuel cost 
compared with the base scenario is 21%, 0.4% and 22% as a result of load increase alone, 
deterioration in generator efficiency due to temperature, and both effects together, 
respectively for the entire ozone season.  
 
Next, in our three-episode analysis, Figure 3 shows the sum over nodes of loads for the 
three-day episode period.  As anticipated, a greater impact occurs during peakload 
periods when demand is already high (and temperatures are likely to be high), and a 
lesser impact during the off-peak period.  The average impact is around 5.0%, but impact 
during peak-demand hours could be as high as 5.6%.  Table 5 summarizes the emissions 
and fuel cost impacts.  The impacts due to load changes are almost two orders of 
magnitude greater than the impacts due to changes in generator efficiency. (In the latter 
analysis, we will focus exclusively on the effect of heat rate changes alone.)  Note that for 
this three day period, NOx emission impacts are not zero, because emissions are capped 
only for the entire ozone season, and not for particular days.  NOx emissions have 
increased during this time, implying that emissions at other times are lower in order to 
meet the overall cap.   
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Figure 3: Load Profile over 3-Day Episode Period in PJM (Aug 7 – 9) 

 

Table 5: Electricity Demand and Generators Performance Impact Relative to Base  
    Case for Three Day Ozone Episode, Assuming 2 oF Temperature Increase 

Impact\Category NOx Emission SO2 Emission Fuel Cost 
Demand Impact 5% 5.5% 19.9% 
Generator Efficiency Impact 0.076% -0.001% 0.25% 
Joint Impact 4.9% 5.4% 20.3% 
 
 
Figure 4 illustrates the hourly emissions impact during our three-day episode period, 
where the left graph represents the NOx emission and right one is for SO2 emission. The 
climate change scenario is the joint impact of load increase and generator efficiency 
deterioration due to the ambient temperature increase. The average impact is 4.9% and 
5.4% for NOx and SO2, respectively. While most NOx emission increases occur during 
peakload hours, i.e., day time, the increase of SO2 emission tends to occurs during both 
day and night time.   This is because the marginal generators at night are coal plants, 
which are high SO2 emitters. 
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Figure 4:  NOx and SO2 Emissions Impact during Three-Day Episode Period, PJM 

 
Figure 5 further decomposes the aggregate emissions impact of the three-day episode into 
state-level results. In terms of NOx emissions, the greatest tonnage impact occurs in 
Maryland and Pennsylvania, amounting to 6.3 % and 3.3% increases compared with base 
case, respectively. The percentage increases for NOx in Delaware and New Jersey is 
10.1% and 3.5%, respectively, but the tonnages involved are much smaller than the other 
states.  Among states, the SO2 tonnage impact is highest in Pennsylvania and lowest in 
Maryland.  
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Figure 5:  State-Level Impact of 2 oF Warming during 3-Day Episode 
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3.  Inter-Year Variability of Load and Temperature 
3.1 Motivation 
 
The analysis in Section 2 focused on load and temperature data in 2000. One important 
aspect about climate change is its variability from year to year.  To explore the impact of 
such inter-year variability on the demand and, thus, on emissions, GWU used time-series 
temperature data from the GISS Global Circulation Model (GCM) from several cities 
within the study domain for fourteen years as inputs to their demand models .  In this 
analysis, we treated years1991-1998 (90s) as the reference years, assuming no climate 
change.  On the other hand, the six years of 2050-2055 (“50s”) are seen as experimental 
years, which weather conditions are affected by climate change. We assume that there are 
two distinct distributions that characterize the temperature data for 90s and 50s, 
respectively.  The temperature of a given year, e.g., 1991 and 2050, is simply a 
realization of a random draw from the respective temperature distribution i.e., 90s and 
50s. The temperature data is then used by the GWU research group to simulate hourly 
loads using short-run load forecast models (for the 1990s) and combining short run noise 
from their short-run forecast models with long run averages.  In the next two sections, we 
present the analyses with regard to inter-year variability of ground-level temperature and 
the predicted load.  
 
3.2 Inter-Year Temperature Variability 
 
Figure 6 plots the summer average ground-level temperature for fourteen selected PCAs 
in the PJM and part of ECAR region during 1991-1998 and 2050-2055.  Each PCA is 
represented by a city within the region.  For example, BC (Baltimore Gas & Electric) is 
represented by the city of Baltimore.  The years 1-8 and 9-14 in the X-axis correspond to 
1991-1998 and 2050-2055, respectively.  The difference in temperature between 90s and 
50s varies by PCA, with highest of 3.15 °C for ME (Metropolitan Edison) and lowest of 
2.06° C for AE (Atlantic Electricity). Not only is the temperature generally higher among 
the years in the 50s than among the 90s, but so is the variance.  This implies that 
extremely hot years are considerably more likely in the 50s.  The variance in different 
PCAs is more or less the same, so the variability of temperature among cities of our study 
is quite homogeneous.  
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Figure 6: Average Temperature of fourteen PCAs during years 1991-1998 and 2050-
2055 
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.3 Inter-Year Load Variability 

igure 7 illustrates the inter-year variability of temperature (left) and load (right) for one 
elected PCA – Baltimore Gas and Electric (BC).  This choice of PCA is for illustrative 
urposes.  Similar results apply to other power control areas.  The variability within a 
ear is portrayed using temperature- and load-duration curves, respectively.  A duration 
urve shows the number of hours during the summer that the respective quantity exceeds 
he value given on the y-axis. 

or temperature, the respective standard deviation across years is 0.41°C and 0.49 °C for 
he 90s and 50s.  Thus, the variation of temperature across 2050-2055 is only marginally 
arger than that of 1991-1995.   

n Figure 7 (right), we plot load duration curves for the fourteen years for the same PCA.  
he average standard deviation across years is 47 MW and 76 MW for 1991-1998 and 
050-2055, respectively. The implication of such inter-year variability in load and 
emperature on pollutions emissions will be explored and discussed in the latter sections 
f this report. Finally, Figure 8 plots the average summer load against average summer 
emperature for BC.  As anticipated, there is an apparently upward trend, showing that 
igher average loads are associated with higher temperatures. Two clusters are apparent, 
hich correspond to data point for the 90s and 50s, respectively.  The great spread for 
0s also validates that the temperature variance/standard deviation is larger for years in 
hat decade.  
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Figure 7 shows that a load response of approximately a 2.5% change in demand for each 
degree F (4.4%/oC), consistent with Section 2’s results.   However, the load model 
underlying Figure 7 is based on just the short-run response; the long-run response will be 
greater, as discussed later in this report. 
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Figure 7: Inter-year temperature (left) and load (right) variability of Baltimore Gas and 
Electricity 
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Figure 8: Plot of summer average temperature against load for Baltimore Gas & Electric 

 19



4.  Long-run emission simulations 
In contrast to the short-run analysis of Section 2, this section explores the long-run effect 
of climate change on NOx emissions.  In particular, the geographic coverage of the 
analyses in this section is expanded from the mid-Atlantic region represented by PJM to 
include upwind Midwestern and Southern states in ECAR.   
 
Figure 9 provides a flowchart of the research tasks of the long-run analysis. First, in the 
long-run, the load duration curve has to reflect not only demand growth due to 
macroeconomic factors but also the changes in load shape because of the installation of 
climate-sensitive energy-using equipment by consumers. We developed a procedure in 
Section 4.1 that constructs such a curve under alternative climate scenarios.  This 
procedure takes into account both the short-run load variability induced by weather 
variations as well as long-run load shape changes in response to climate change; the 
procedure does so by imposing short-run temperature induced fluctuations (resulting 
from changes in consumer utilization of energy using equipment) upon long-run average 
load distributions (reflecting changes in equipment stock due to average climate).  
Second, to estimate future mixes of generation capacity based on the predicted future 
load duration curve developed in Step 1, we deploy two approaches in Section 4.2: (a) 
graphical screening curve analysis and (b) least-cost LP analysis.  The third and final step 
is to simulate hourly NOx emissions.  Although the emissions are capped throughout the 
season, the increase in demand under warmer climate conditions will have a 
redistributive effect on hourly emissions; that is, larger impact during peak periods than 
that during off-peak periods. Each step will be discussed in the below subsections.    
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Step 1: Construct long-run NEMS adjusted load duration curve 
and hourly loads consistent with hourly temperature scenarios 

and long run climate averages (Section 4.1) 

Step 2: Analyze future capacity mixture using screening curve 
approach and transmission-unconstrained long run LP model 

(Section 4.2) 

Step 3: Generate year-specific hourly NOx emissions using a 
long-run capacity expansion models with fixed capacity mix from 

Step 2 (Section 4.3) 

Figure 9: Flowchart of long-run analysis 

 
 
4.1  Step 1: Adjust Long-Run Demand Based on NEMS Load Shape   
 
4.1.1  Procedures.   For the long-run emissions scenarios, we use 2025 loads as forecast 
by NEMS (National Energy Modeling System).6   Loads in that year are used because 
that is the last year simulated in NEMS system.7  There are five substeps in the procedure 
that adjusts long-run load shapes for the five month ozone season based upon the output 

                                                 
6 The National Energy Modeling System is an integrated system of models of individual energy sectors in 
the US economy that is used by the US Energy Information Agency in policy analyses and its Annual 
Energy Outlook (Gabriel et al., 2001).   This model is used because it is in the public domain, and does 
represent linkages between heating- and cooling degree-days and electricity consumption over time in the 
residential and commercial sectors.   
7 There is an inconsistency in using 2025 electricity loads and 2050 climate.  The use of 2025 NEMS 
results means that we can also a set of generation cost and emissions assumptions for that year from the 
NEMS database, allowing us to construct a consistent set of load and generation assumptions for a scenario 
year well into the future.  This is sufficient for our purpose, which is to illustrate the use of the emissions 
modeling system to project emissions under climate change scenarios. 
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of short-run load simulation models to produce a time series of hourly loads that is 
consistent with both: 
 
• a given series of hourly temperatures and 
• an assumed average climate. 

 
These steps include (1a) constructing a load duration curve consisting of several load 
blocks, each with a constant load, using NEMS definitions; (1b) analyzing average 
cooling degree-day forecasts (CDD) for the 2050 decade based upon temperature time 
series from the Goddard Institute of Space Sciences GCM; (1c) calculating hourly loads 
under assumption of a stated increase in CDD in a short run forecast model (done by 
GWU); (1d) using hourly temperatures from the GISS GCM to calculate hourly-specific 
adjustment ratios to allow superposition of those short run fluctuations upon an arbitrary 
block load duration curve; and (1e) finally estimating the hourly loads that is consistent 
with the hourly temperatures and average climate assumed.   
 
We first present the notation (variables and parameters) used by this procedure in  
Table 6, followed by a flowchart (Figure 10) and description of each step.  
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Table 6. Variables, parameters and set used in long-run demand analysis 

Variables Definition 
( )h H b∈  Set of hours h that belong to the NEMS load block b.  
( )( ( ))s wb B b b B b∈ ∈  Subset of blocks belong to the five months of the summer ozone 

season (winter time) 
90sy Y∈  Set of years y that belong to years in the GISS GCM 1990s 

simulations considered here (1991-1998) . 
50sy Y∈  Set of year y that belong to years in the GISS GCM 2050s 

simulations considered here (2050-2055)  
| ( )H b |  Number of hours in block b 

,
GW
h yD  Hourly demand (Load, in MW) estimated by the GWU short-run 

(artificial neural network) models calibrated to recent load data 
for the study region, using as an input GCM temperature data in 
hour h and year y.  This reflects short-run responses to 
temperature variations in year y under a GCM scenario, and are 
not adjusted for long run changes in consumer capital stock. 

  {1991 1998,2050 2055}y∈ − −

,
GW
b yL  Average over ,

GW
h yD ( )h H b∈ . 

,90
GW
b sL ( ) ,50

GW
b sL Average  over ,

GW
h yD ( )h H b∈  over years 1991-1998 (2050-2055) 

,2025
NEMS
bL  Load for block b  in year 2025 under NEMS load shape, base case 

(no change in climate).  These loads are available by NEMS 
regions (for example, one region corresponds to PJM). 

,2025 ( )NEMS
bL X  ,2025

NEMS
bL  under an assumed increase in cooling degree-days of 

in year 2025.  This was accomplished by running the 
commercial and residential electricity demand modules of NEMS 
(GWU). 

CDD X∆ =

,
NEMS
h yD  Hourly demand (load) adjusted to be consistent with the NEMS 

load duration curve (i.e., the average of  in each block 
equals the NEMS projection). 

,
NEMS
h yD

CDD∆  Assumed change in the CDD (cooling degree days) under the 
climate change scenario.  For our simulations, based on 
Philadelphia and Washington, DC region temperatures from the 
GISS GCM simulations, this was calculated to be 414 F° on 
average between the 1990s and 2050s simulations. 

,b yλ  NEMS block adjustment factor for block b in year y 
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Step 1a: Construct L  from D  ,50 ,90,GW GW
b s b sL ,

GW
b y

Step 1b: Analyze CDD from GCM output 

Step 1c: Calculate L X  
based on CDD analysis from Step 1b 

,50 ,90( ), ( )NEMS NEMS
b s b sL X

Step 1d: Calculate NEMS adjusted factor for 
90s and 50s: ,50 ,90,b s b sλ λ  

Step 1e: Calculate NEMS adjusted hourly 
load using GWU short-run load  ,

GW
h yD

 
Figure 10: Flowchart for generating NEMS adjusted load duration curves 

 

 The five steps associated with Figure 10 is described in below in more detail:  

Step 1a: The first step is to construct an initial block-based load-duration curve for block 
b in year y, i.e., ,  based on GWU hourly load data ( ). The load block is defined 
by load group and load segment.  In particular, there are three NEMS load groups, 
depending on the time of a given day: mid day (9:00 -16:00), morning evening (6:00–
8:00 and 17:00-24:00) and night (1:00-5:00); and three levels of load segments in each 
load group: highest 1%, next highest 33% and the lowest 66%.  The following equation 
shows that the block height of a given block is the average hourly load in that block.   

,
GW
b yL ,

GW
h yD
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,

( )
, | ( ) |

GW
h y

h H bGW
b y

D
L

H b
∈=
∑

, for        (7) ,b y∀

 
Step 1b: The second step calculates the block-based load assuming an X °F-day increase 
in the CDD ( ).  The year 2025 output from the NEMS analyses by GWU 
simulates two specific conditions: an 0 F°-day and 150 F°-day increase in the CDD (base 
case and climate change case, respectively).  That is, NEMS gives us  and 

.  We assume  is approximately linear in X.  Thus, the term 

 then can be calculated by extrapolating a linear function that passes through  

 and . More specifically, it can be estimated by the following:  

, ( )NEMS
b yL X

, (0)NEMS
b yL

, (150)NEMS
b yL , ( )NEMS

b yL X

, ( )NEMS
b yL X

,2025 (0)NEMS
bL ,2025 (150)NEMS

bL

 ,2025 ,2025 ,2025( ) (1 ) (0) ( ) (150)
150 150

NEMS NEMS NEMS
b b b

X XL X L L= − +     (8) 

 
Step 1c: We analyzed the results of the GISS GCM (as downscaled using MM5) by 
considering the average increase in the CDD in the MM5 cells (ground level) 
corresponding to two cities (Baltimore and Philadelphia).8  The average difference in 
CDDs between the 1990s and 2050s scenarios is 414°F-day.   The below table shows the 
input data for this analysis.   
 

                                                 
8 The GISS GCM scenario were downscaled using MM5, a regional scale meteorological model that is 
driven by the coarser scale GCM.  A 36 km grid scale was used. (Hugh? Is that right?) 
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Table 7:  Ground-level May-September temperatures for 36 km MM5 cells containing 
Baltimore and Philadelphia from GISS GCM/MM5 scenarios for 1991-1998 and 2050-

2055 
 

Scenario Baltimore Philadelphia
Year  CDD oF (mean) CDD oF (mean)
1991 583.0 68.1 548.3 67.8 
1992 496.8 67.2 478.7 66.9 
1993 603.5 67.7 601.6 67.5 
1994 561.5 67.1 514.7 66.7 
1995 638.0 68.0 585.3 67.4 
1996 631.7 68.4 571.8 67.8 
1997 731.5 68.3 718.7 68.2 
1998 633.3 67.9 570.2 67.4 
2050 984.7 70.9 936.0 70.6 
2051 1046.1 71.6 997.7 71.3 
2052 1048.0 71.3 992.6 70.7 
2053 1014.5 71.4 952.0 70.8 
2054 874.2 70.5 853.2 70.2 
2055 1223.7 72.7 1149.4 72.2 

 
This CDD data means that we need to obtain to simulate the change in 
average demands (by block) in an average year under a 2050s climate.    This 
corresponds to an average of 3.5°F increase in ground-level temperature for the ozone 
season.

,2025 (414)NEMS
bL

9    
 
Step 1d:  The next step is to calculate NEMS block-adjustment factor 90, sb y Y

λ
∈

( 50, sb y Y
λ

∈
) 

for years in 1990s (2050s), where the 1990s (or “90s”) represent the no climate change 
scenario and the 2050s (“50s”) are the climate change scenario.  These factors are used to 
adjust the GWU short-run hourly simulations so that their averages are consistent with 
the NEMS load blocks. Those factors are calculated in the following two equations.  
  

90 90,2025, ,
( 0) /s s

NEMS NEMS
bb y Y b y

L X Lλ
∈

= = 90,, for sb y Y

,

∀ ∈     (9) 

   

GW

 50 50,2025,
( 414) /s s

NEMS GW
bb y Y b y

L X Lλ
∈

= =  for ∀b, y∈Y50s    (10)  

 

Step 1e:  Calculate NEMS adjusted hourly load using GW hourly load. 

  
                                                 
9 The CDD metric for potential cooling demand is calculated by taking the positive difference between 
average daily temperature and 72o, and summing this over all days in the cooling season.  For instance, two 
days, one with an average temperature of 75o and the other with an average of 80o, results in 11 CDDs. 
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90 90,( ), ,s s
NEMS GW

h yh H b y Y b y
D D λ

∈ ∈
= , for 90, sh y Y∀ ∈      (11)   

50 50,( ), ,s s
NEMS GW

h yh H b y Y b y
D D λ

∈ ∈
= , for ∀h, y∈Y50s     (12) 

   

The above procedure produces hourly loads consistent with hourly meteorology and long 
run climate change (in the 2050s scenarios).  Meanwhile, the construction of the 
nonozone season (“winter”) hourly load is rather straightforward: we use the output from 
NEMS analysis directly.  Hourly loads are not necessary because we do not do air quality 
simulations for the winter months.  For example, if there are N hours in block b during 
winter with a load of  based on NEMS output, we then create N number of hours of 
such load in the load duration curve.   

,
NEMS
b yL

( ), ( ), ( ),w
NEMS NEMS
h H b b H b y b B b y

D L
∈ ∈ ∈

= W        (13) 

Therefore, in this illustrative analysis, we do not consider how long run climate change 
affects winter loads.   This can be an important omission, if changes in winter loads (due 
to decreases in heating degree-days) translates into changes in the generation capacity 
mix. 
 
4.1.2  Results.  The result of the above process is an estimated distribution of hourly 
loads in each year considered, representing a total of 14 years of GISS GCM climate 
simulations under conditions for the 1990s and 2050s (1991-1998, 2050-2055).   The 
hourly load distributions are shown as load duration curves in Figure 11 and Figure 12, 
respectively.   
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Figure 11: NEMS Adjusted Load Duration Curves for Years 1991-1998 
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Figure 12: NEMS Adjusted Load Duration Curves for Years 2050-2055 

 
 
Table 8 presents the descriptive statistics for NEMS adjusted load duration curves for 
1991-1998 and 2050-2055, respectively for the PJM and (partial) ECAR region 
considered in this study.  In particular, we report peak load, total energy consumption, 
average load and its standard deviation.  Given a 414 degree-day increment in the CDD 
for the 2050s series compared to 1990s series, the average peak load for the 2050s series 
is 193.9 GW, which is 11% higher than that the 174.6 GW average peak for the 1990s.  
The effect of CDD on the average load is much less, however. The average ozone season 
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load in 2050s is only 4.4% higher that that in 1990s.10  The 414 degree-day increase 
results from an average 4°F increase (approximately) in the summer time temperature.  
 

Table 8: Descriptive statistics for NEMS adjusted load duration curve for years 1991-
1998 and 2050-2055 

Year Peak Demand 
[GW] 

Total Energy 
[TWh] 

Mean 
[GW]a

Standard 
Deviation 

[GW] 
1991 169.7 876.7 100.1 25.3 
1992 177.5 883.7 100.9 26.1 
1993 166.5 878.3 100.3 25.3 
1994 169.0 881.1 100.6 25.6 
1995 168.5 881.3 100.6 25.6 
1996 175.4 885.5 101.1 26.5 
1997 184.2 883.2 100.8 26.0 
1998 185.9 901.6 102.9 28.5 
2050 191.3 897.0 102.4 28.1 
2051 190.4 899.9 102.7 28.5 
2052 188.4 897.8 102.5 28.2 
2053 183.3 893.7 102.0 27.8 
2054 204.5 906.7 103.5 29.3 
2055 205.5 907.0 103.5 29.4 

a.  The seven winter months were assumed to have no change; thus, all changes are in the 
five summer months 
 
 
Thus, the average temperature sensitivity is roughly 2.5% per °F for the peak period, but 
only 1.1% per °F on average for the ozone season.   This can be compared to the short 
run sensitivity described in Section 2, which was 2.15% per oF on average.   There are at 
least two possible reasons for this difference: 
 

1. In the long run, investment in more efficient energy using equipment (since 
greater utilization would more easily justify such investment) dampens the energy 
use response to temperature changes.    

2. Modeling limitations in NEMS that result in understating of temperature response.   
For instance, choices from among possible energy-use technologies may be 
restricted.   

 
The results in the table also show that the inter-year variability measured by the range of 
the peak demands is 11.6% and 12.1%, respectively, for the 1990s and 2050s series 
(relative to the lowest peak in the period).  For example, the range of peak-hour load for 
1990s series is 19.4 GW, which is 11.6% of the lowest peak load (166.5 GW) among the 
years 1990-1998.    These results show that year-to-year variation in weather can result in 
                                                 
10 The total demand over the entire year is only 2% in the 2050s than 1990s, according to the Table.  
However, all the load increase in the 2050s is assumed to take place in the summer months.   
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significant changes in loads.  Because hotter, higher load years will also be more likely to 
have conditions favorable to ozone episodes, there is likely to be great variation in year-
to-year average ozone levels as well as numbers of severe ozone episodes.  More 
importantly, from the point of view of impact analysis, consideration of emissions from 
an average load year will likely understate the ambient ozone impact.  That is, the 
average ozone concentration (or average days of ozone NAAQS exceedences per year) 
will be less for an average load year than when calculated over a sample of years 
reflecting year-to-year temperature variations.11

 
The corresponding range for average summer-time loads is 6.7% for the 1990s and 3.5% 
for the 2050s.  The relatively high value for the 1990s arises from one very high year 
(1998), and so the difference in ranges could be due to sample error. 
 
4.2.  Step 2.  Long-Run Generation Mix Analysis 
 
The purpose of this step is to estimate the mix of generation capacity that a competitive 
electric power market will provide in response to a given distribution of electricity 
loads.12  The output form long-run screening curve analysis will give the amount of new 
capacity in MW by types of technologies.  In this project, we deploy two approaches: a 
graphical approach (“screening curves”), and LP transmission-unconstrained model.   
The screening curve approach is excellent for communicating the intuition behind 
different solutions.  The LP, although more complex, has the advantage of being able to 
account for side constraints such as reserve margin requirements, limited or intermittent 
energy output (hydro, wind), emissions limitations, and limits on annual capacity factors 
(ratios of actual output to capacity).    For this reason, screening curve results are 
presented only to provide some insights, and it is the result of the LP model that is used 
to generate emission scenarios. 
 
Table 9 lists the generation and emission characteristics of the seven most attractive 
generation technologies we considered (a number of others were also analyzed, but were 
inferior to these).  The primary data source is EIA (EIA, 2004), supplemented with 
information about emission rates from USEPA IPM (USEPA, 2005d).  
  
  
 

                                                 
11 This results from Jensen’s inequality: the expected value of a convex function E(f(X)) is at least equal to, 
and generally greater than f(E(X)), the function evaluated at the expected value of the input.   In this 
context, X is annual weather conditions, and f(X) is an air quality index such as frequency of ozone 
NAAQS exceedences.   For instance, in a cool year, there may be 2 exceedences, while an average year 
might have 5 exceedences.  But a hot year might have 23 exceedences.   If those three possibilities are 
equiprobable, then E(f(X)) = (2+5+23)/3 = 10 > f(E(X)) = 5.   It is a well accepted principle of risk analysis 
that if a system is nonlinear, a full distribution of inputs (such as meteorology) should be considered, not 
just average or typical conditions.   
12 A competitive response is equivalent to a least-cost optimum, if demand is perfectly inelastic, as assumed 
here.   Therefore, our model can be viewed as simulating a competitive market, or as simulating the result 
of an efficient regulatory process that induces power companies to make least-cost investments.  
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Table 9: Data for Seven Selected Generation Technologies (Source: NEMS) 

 
Levelized 

Cost 
Fuel 
Cost 

Variable 
Cost 

Fixed 
O&M 

Heat 
Rate 

Cap 
Factor

Forced 
Outage 

Rate 
SO2
Rate 

NOx
Rate 

  [$/kWy] 
[$/ 

MBTU]
[$/ 

MWh] 
[$/ 

MW-y]
[BTU/
kWh] [] [] 

[tons/ 
MWh] 

[lbs/ 
mmBTU]

Scrubbed Coal 149.5 1.23 3.10 24.81 9000 0.84 0.0470 0.01015 0.11 
IGCC 174.59 4.88 2.07 34.11 8000 0.80 0.0181 0 0.11 

Adv. Nuclear 230.65 0.00 0.43 59.17 10400 0.90 0.0541 0 0 
Conventional CC 69.727 4.88 2.07 12.40 7444 0.90 0.0181 0 0.02 

Advanced CC 76.889 4.88 2.07 10.34 6268 0.90 0.0181 0 0.02 
Conventional CT 53.536 4.88 4.14 10.34 10878 0.92 0.0235 0 0.08 

Advanced CT 60.33 4.88 3.10 8.27 9289 0.92 0.0235 0 0.08 
 
 
4.2.1. Screening Curve Approach.  This graphic approach relies on plotting total cost of 
generation from 1 MW of a power plant against the capacity factor (CF) of the plant.13  
This results in a linear function, with the y-intercept being the fixed (annualized 
investment) cost and the slope being the marginal operating cost per MW-year.   For any 
given CF, the plant type whose line is the lowest is the most economic means of meeting 
the demand which is exceeded that fraction of the year.  As a result, we can then 
superimpose those curves on the load duration curve, which allows us to identify the 
ranges of loads that should be served by each generation type.  This assumes that 
generation is perfectly reliable and that there are no constraints other than that total 
generation has to meet demand in each hour.   
 
Figure 13 is a screening curve plot that uses the PJM and ECAR load duration curve 
based on 1990s and 2050s temperature data derived in Step 1.  Let capital P donates the 
complete set of future technologies and p is a subset of P.  The relationship between load 
(L) and capacity factor (z) is described by a function K, i.e., K(z)→L, where z is the 
capacity factor.  A set of 18 possible technologies (P) are included in Figure 13. For a 
given capacity factor, a technology is said to be the dominating technology if no 
technology has a lower total cost.  In other words, the key step in screening curve 
analysis is to find the set of technologies defining the lower envelope of the cost curve.  
Figure 13 implies that the seven technologies (p=1,..,7) that constitute the lower envelope 
are conventional combustion turbine, advanced combustion turbine, conventional 
combined cycle, advanced combined cycle, coal plants with scrubbers, IGCC and 
advanced nuclear.  The generation characteristics and cost information about seven 
technologies in the lower envelope are displayed in Table 9, above.  
  

                                                 
13 Turvey and Anderson, op. cit.; S. Stoft, Power System Economics, Designing Markets for Electricity, 
IEEE, Piscataway, NJ, 2002. 
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Figure 13: Traditional Graphical Screening Curve Analysis with All 18 Generation 
Technologies 

 
To estimate the amount of the new capacity of each type (up), we first calculate the set of 
the intersection points zp, which can be obtained by solving a series of the system of two 
linear equations.  For example, the intersection for the first two technologies, i.e., 
conventional combustion turbine and advanced combustion turbine, yields a capacity 
factor or x-axis equal to 0.0846(z1).  Other intersection points can be estimated by 
applying the same procedure: 0.09565 (z2), 0.3115 (z3), 0.5117 (z4) and 0.5803 (z5). 
Except for the first and last technology, the estimated capacity for p technology can be 
calculated by K(zp)-K(zp+1).  For p=1, K(z0)=Max(L); and for p=7, K(z8)=Min(L). In 
addition, we assume that fossil-fueled plants built prior to 1965 will be retired by 2025, 
but that post-1964 fossil plants and all nuclear plants will still be in service.  The latter 
are subtracted from demand, so that the load curve in the screening curve figures is only 
the load net of existing capacity.   
 
Figure 14 plots the screening curve of seven generation technologies associated with the 
lower envelope. The results of the screening curve analysis are summarized in the Table 
10.  They show that the higher demands associated with the 2050s scenario results in 
more capacity being required, primarily peaking capacity.  In particular, significantly 
more peaking generators are added in the 2050s scenario, i.e., 13,000 MW of combustion 
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turbines, because of the large increase in peak period demands.  In addition, a moderate 
amount more (about 4000 MW) of baseload generators, i.e., IGCC, and combined cycle 
generators are constructed for the 2050s than for the 1990s climate..   

 

2050s

1990s

Figure 14: Traditional graphic screening curve analysis with technologies associated 
with lower envelope 

 

Table 10: Results from screening curve analyses using load duration curve for 1990s 
(2050s) (Note: LDC adjusted downwards for existing capacity) 

Technology Capacity [MW] 
Conventional C.T. 31,990 (45,071)
Advanced C.T. 1,597 (2,083)
Conventional C.C. 30,164 (34,275)
Advanced C.C. 13,236 (11,568)
IGCC  6,023 (7,856)
Scrubber Coal 0 (0)
Total 83,011 (100,854)
 
 
The traditional screening analysis is rather intuitive, but also subject to two limitations.  
First, emissions cap constraints cannot be explicitly considered, therefore, the result could 
be a bias in favor of technologies with higher emission rates.  Also, other side constraints 
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cannot be considered.  Finally, retirement decisions for old generators need to be 
exogenously determined in the screening curve analysis.  In the next section, we present 
an alternate approach that allows these two limitations to be corrected. 
 
4.2.2. Linear Programming Transmission-Unconstrained Least-Cost Model. The 
second approach to generating future capacity mixes is a least-cost LP capacity expansion 
model without transmission constraint.14  The motivation of this approach is that the 
screening curve method presented in the Section 4.2.1 is only an approximate approach, 
where other reliability and environmental constraints such as reserve margins and 
emissions cap are not included in the analyses.  As a result, high-polluting technologies 
may be overbuilt under the screening curve approach, and too little capacity might be 
constructed.  In contrast to a complete long-run least cost capacity expansion model, this 
model disregards the network.  In other words, all generators are assumed to produce and 
sell power at the same market. In addition, for coal generators built after 1965, the 
retirement decision is endogenously determining by associating them with an annual cost 
of 5000 $/kW if the owners decide to maintain them online.  The load used in the LP 
transmission-unconstrained leas-cost analyses is the average of 1991-1998 and 2050-
2055, respectively for the PJM and ECAR regions included in the analysis.  (Note that 
this is a larger region than considered in the screening curve analysis, so the results are 
not strictly comparable.)   

Long-run capacity expansion decisions are assumed to be based on average load 
distributions over a decade; that is, the average over 1991-1998 and 2050-2055 for the no 
climate change and climate change scenarios, respectively.  The specific load associated 
with a year, e.g., 1991, is simply a realization of a random draw from that underlying 
load distribution.  In other words, we simulate two load distributions – the 1990s and 
2050s – and they differ by 414°F-days in terms of CDD.   The capacity decisions are 
assumed to be based on an average distribution of load, calculated by averaging the load 
duration curves across years within a decade, as the next figure shows.  A 20 load block 
approximation of these curves is used (Figure 15), consistent with the NEMS load block 
definitions. 

                                                 
14 See (Turvey and Anderson, 1997) for a review of linear programming methods for capacity mix selection, 
or (Hobbs, 1995). 
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Figure 15: Average approximated load blocks used in LP generation mix analyses for 
1990s and 2050s 

 

Table 11 summarizes the definition of the variables, parameters and set that are used in 
the model.  The mathematical equations for the model are presented afterward.  Table 9 
above contains the data for the seven generation technologies considered in the LP 
analysis. 
 
One of strengths of the LP approach is its ability to explicitly model the NOx seasonal 
constraint. However, the tightness of the NOx cap depends on which policy that a model 
intends to simulate. For the purpose of the current project, we will use NOx cap under the 
Clear Air Interstate Rule (CAIR); for our study region, we estimated a 2025 limit of 
129,110 tons per ozone season.   
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Table 11: Definitions of Variables, Parameters and Sets used in LP Generation Mix 
Analysis 

Variables/Parameters/Set Definition 
h  index of existing plants 
p  Type of new capacity 
t  Period (load block) 

( )t oz t∈  Set of periods subject to ozone season 
OTCh H∈  or OTCp P∈  Set of existing or new sources subject to NOx cap 

htx  Output level of plant h in the t period [MW] 

pu  Amount of new installed capacity of p type[MW] 

ptv  Output level by new plant of type p in period t [MW] 

( )N
ht ptρ ρ  Dual variables for capacity constraint for generator h (p) in 

period t [$/MW] 
( )N

h pκ κ  Dual variable for capacity factor constraint for generator h (p) 
[$/MWh] 

tp  Power price in period t [$/MWh] 
NOXp  NOx allowances price [$/ton] 
RESp  Dual of capacity reserve constraint [$/MW] 

tB  Period width in period  (load block) t [Hours] 

hFC  Fuel cost of plant h (including SO2 allowances) [$/MWh] 

hCAP  Capacity of plant h [MW] 

( )N
h pFOR FOR  Forced outage rate for plant h (p)[%] 

pNFC  Fuel cost of new plant p [$/MWh] 

( )N
h pE E  NOx emission rate for plant h (p) [tons/MWh] 

pLC  Levelized capital cost of new plant p [$/MW/yr] 

( )N
h pCF CF  Maximum capacity factor of plant type h (p) [%] 

pNFOR  Forced outage rate for new type of plant p [%] 

( )t peakL L  Load in the period t (peak) [MW] 

RM  Reserve margin [%] 
TC  Total cost [$] 
 
 
The equations (14)-(21) define a long-run LP transmission-constrained capacity 
expansion model (LRexp).  Problem LRexp can be viewed as a variant of the short-run 
LP dispatch model, i.e., STM-summer (Section 2, above).  Both models attempt to 
minimize the overall cost.  However, in contrast to the production cost objective in the 
STM-summer, the objective function in the LRexp includes operating cost for newly 
installed capacity as well as its construction cost.  One year’s time is considered, so 
capital costs are expressed in levelized (or annualized) terms.  In addition to capacity 
constraints in the equation (14)-(15), the demand constraint in equation (19) and NOx cap 

 37



constraint in equation (21), there are two sets of new constraints.  First, a capacity factor 
constraint in equation (17) and (18) limits the annual total energy can be produced by a 
generator.  Next, equation (20) is a capacity reserve margin constraint imposed by the 
regulator to ensure that adequate capacity is built for the system, including a reserve 
margin in order to deal with load or generator outage contingencies.     
 

, ,
t ht h t pt p p p

h t p t p

MINTC B x C B v NC LC u= + +∑ ∑ ∑      (14) 

Subject to:  (1 ) , ,ht h hx FOR CAP h t≤ − ∀      ( htρ ) (15) 

       ((1 ) , ,N
pt p pv FOR u≤ − ∀p t N

ptρ ) (16) 

  8760(1 ) ,t ht h h h
t

B x FOR CAP CF≤ −∑ h∀    ( ) (17) hκ

  8760(1 ) ,N
t ht p p p

t
B y FOR u CF≤ −∑ p∀    ( ) (18) N

pκ

  ,t ht t pt t t
h p

B x B v B L+ ≥∑ ∑ t∀      ( tp ) (19) 

        (h p peak
h p

CAP u L RM+ ≥∑ ∑ RESp ) (20) 

  
, ,OTC OTC

N
t h h t p p x

h H t p P t

B E x B E v NO
∈ ∈

+∑ ∑ ≤     ( NOXp ) (21) 

   , ,ht pt px y u ≥ 0
 
We now consider the capacity mix solution constructed from the average, across years, of 
the 1990s load duration curves constructed in Step 1 of the long-run analysis for the 
portions of the PJM and ECAR regions we considered.  First, there is no endogenous 
retirement since 5000$/MW per year going forward cost for existing generators is much 
less than the levelized cost for constructing new generators. In other words, plant owners 
would rather keep old generators online than build a new set of generators, even if new 
generators are more efficient.  Next, the model chooses several new technologies in 
addition to the existing plants: 66,424 MW of IGCC, 4,975 MW for conventional CC, 
and 37,434 MW for conventional CT.  The estimated NOx allowances price is 5,025 $/ton.    
We now consider the results from the LP analysis using 2050s load data.  Three 
technologies are chosen for investment by the LP model: IGCC, conventional CC, and 
conventional CT.  The amount of new capacity is 67,247 MW of IGCC, 9,697 for 
conventional CC and 52,409 MW of conventional CT, respectively.  Thus, it is CT 
capacity that is most strongly affected by climate warming (almost 15 GW more is added, 
consistent with the screening curve analysis).  The NOx allowances price increases from 
5,025 to 7,581 $/ton, reflecting the effect of increase in demand which increases pressure 
on the NOx market.  Overall, the total new installed capacity is larger using LP 
transmission-unconstrained approach.  This is mainly due to the reserve margin 
requirement, i.e., equation (20).  
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4.3. Simulation of NOx Hourly Emissions 
 
The first two steps of the long-run analysis generate load distributions and mixes of 
generation capacity.  The last step dispatches that capacity against hourly load 
distributions that are consistent with the hourly meteorology used in CMAQ so that, for 
instance, emissions are higher when the weather is warmer (and thus more conducive to 
ozone episodes, at least in the summer). 

 
Although the total NOx emissions are capped throughout the ozone season, an increase in 
energy demand under warmer climate conditions, i.e., a climate change effect, will have a 
redistributive effect on hourly NOx emissions.  That is, emissions during a particular hour 
incur an opportunity cost of not being able to emit in other hours.  In particular, if the 
incremental NOx emission occurs during peak demand hours when ozone concentrations 
are already high, the result could be more frequent occurrences of extreme ozone 
episodes.  
 
4.3.1 Methodology.  In Section 4.2, the LP generation mix model is solved based on a 20-
block system – 10 blocks apiece for the ozone and non-ozone periods – using average 
load duration curves from the 1990s and 2050s series. The dispatch model of this section 
is formulated using just the ozone season’s 10 load blocks, and also includes the 
transmission grid constraints, as in Section 2. 
 
To illustrate the effect of climate change on NOx hourly emissions, we simulate power 
dispatch for just two years: 1991 and 2055. The new capacity is kept at 1990s and 2050s 
levels (from Section 4.2) for 1991 and 2055, respectively.  That is, the variables up are 
fixed at the 1990s and 2050s level for 1991 and 2055 simulations, respectively.  These 
two years are chosen because they are the warmest (2055) and coolest year (1991) among 
these 14 years. We report the simulated results in terms of “emission duration curves” in 
the next subsection.   However, the hourly time series of emissions by location is meant 
to be used in the SMOKE module of CMAQ. 
 
4.3.2 Simulated Results for hourly NOx emissions.  Figure 16 plots the NOx hourly 
emission duration curve for the two selected years (i.e., 1991 and 2055) over the summer 
period, which includes 150 days or 3600 hours.  The width of each step corresponds to 
the number of the hours in that block.  For example, the peak block contains only 35 
hours.   
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Peak period difference = 32.7% 

Figure 16: Simulated NOx duration curves of two selected years: 1991 and 2055 

 
Notice that since total NOx emissions are regulated under cap, the area under the two 
curves is equivalent.  However, under a warmer climate condition (i.e., 2055) the 
emission redistributive effect increases peak period NOx emissions by 32.7% compared 
to the peak emissions under 1991’s weather.  Such an increase in the NOx emissions also 
occurs for the next three, i.e., 2-4, as well as for blocks 8-10, but to a lesser extent. For 
instance, the increase in the fourth block is only marginal, roughly 1.7%. The increased 
NOx emissions for 2055 in blocks 1-4 and 8-10 are then made up by the less emissions in 
the blocks 5-7.  
 
In doing the dispatch analyses, we had assumed that the annual cap was firm, in the sense 
that no banking or borrowing from a bank of allowances is allowed.  In reality, a 
particularly warm year with high generation will have higher emissions than cooler years 
because generation owners will take advantage of the bank.  As a result, the high 
emissions we calculated during the peak period of 2055 would be even higher if this was 
allowed.15

 

                                                 
15 In future analyses we can simulate this by making more allowances available at a price equal to the 
shadow price of allowances from the long run analysis. 
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Finally, Figure 17 plots the hourly NOx emission against hourly temperature of Baltimore 
for the hour 14:00 in all days 1991 and 2055. The trend is clearly upward with a 
correlation of 0.51 and 0.62 for two series, indicating that higher temperatures are 
associated with higher NOx emissions. This, together with findings in Figure 16, implies 
that a significant increase in the NOx emissions would occur under climate warming 
during precisely the times when ozone episodes are most likely. 

 

Correlation = 0.51 Correlation = 0.62 

Figure 17: Plot of hourly temperature (Baltimore) vs NOx emission for hour 14:00 of 
1991 (left) and 2055 (right) 
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Appendix I: 
Creation of Script Files of Emissions from Generation Model for use in SMOKE 

Module of CMAQ 
 

 
A crucial step in the analysis is to link the effect of climate change on hourly NOx 
emissions (the outputs of the electric power sector models) with changes in the ambient 
ozone concentrations.  This relies on creating a script file called PTHOUR, which 
replaces the existing emission scenarios for power plants in the region of interest in the 
SMOKE module of CMAQ.  Figure 18 details the procedures that we developed to 
generate the PTHOUR file. PTHOUR file is a text file that specifies the hourly emissions 
of each stationary emission source at a given hour and date.  Each step in the figure is 
described below. 
 
 

 
 

Figure 18: Flowchart of generating PTHOUR file 

 

Step 2: Match the stationary emissions sources with 
PJM and ECAR generation sources 

Step 3: Assign block pollution emissions to hourly 
emissions. (section?) 

Step 1: Filter 1996 EPA point source inventory based on 
emission sources location 

Hourly emission of output 
from SMT-summer (sec 2.2) 

Step 4: Generate PTHOUR file to replace emission 
scenarios in CMAQ  (section?) 
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Step 1:  The 1996 US EPA point source inventory contains more than 395,000 point 

e 

 

tep 2: In the second step, we then match each source by plant ID and unit ID or plant ID 

e 

tep 3: The output from short-run analysis included hourly emission of each generating 

s 

 

tep 4: This step involved following the protocol laid out in the CMAQ documentation to 

emission sources.  They are classified based on a number of fields.  For our purpose, w
first selected a subset of sources using following fields: state, and city ID.  We kept the 
relevant information such as plant name, plant ID, unit ID, capacity, SCC and annual 
NOx emissions for future reference.  This helped us narrow down to a total of 25,249 
sources.  Then, we used SIC codes and locational information, and further identified a
total of 3,283 units as our emissions sources of interest (power plants within our study 
area).  
 
S
alone. For remaining units that we cannot match with plant ID and unit ID, we then 
match with latitude and longitude.  As a result, excluding non-fossil sources, we wer
able to account for more than 98.7% of total capacity in the PJM and ECAR area.  
 
S
unit by load block.  In this step, we assigned the membership of each hour to a specific 
block based on its order in the load duration curve.  For example, 14:00 of 7/30/2000 wa
assigned to be first block (peak block) since its load was among the first 35 hours in the 
load duration curve.  Thus, together with the output from SMT-summer (Section 2.2), we
generated the hourly emission of each source in the models.    
 
S
produce PTHOUR file. 
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Y. Chen and B.F. Hobbs, “An Oligopolistic Power Market Model with Tradable NOx 
Permits,” IEEE Transactions on Power Systems, 20(1): 119-129, 2005. 
 
Y. Chen, B.F. Hobbs, S. Leyffer and T. Munson, "Solution of Large-Scale Leader-
Follower Market Equilibria Problems: Electric Power and NOx Permit Markets," 
Computational Management Science (accepted) 
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Permits," Proceedings of IAEE North America Conference, Mexico City, Mexico, 2003 
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Health Effects and Energy Consumption Behavior: Selected Emission Results," IAEE 
Annual Conference, Taipei, Taiwan, June 3-6, 2005  
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October 24-27, 2004 
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Green Pricing Programs, & Emission Allowances,” 24th Annual North American 
Conference of the US Association for Energy Economics and International Association 
for Energy Economics, July 8 - 10, 2004, Washington, DC 
 
Y. Chen and B.F. Hobbs, “An Oligopolistic Electricity Market Model with Tradable NOx 
Permits,” 23rd International Association for Energy Economics, North American 
Conference / VI Congreso Anual de la AMEE, October 19-21 2003, Mexico City 
 
Y. Chen, B.F. Hobbs, and F.A.M. Rijkers, “US NOx Permits and BE-NL Market 
Integration: Applications of Complementarity Oligopoly Power Models,” Annual 
Meeting, Institute for Operations Research and Management Science, Atlanta, GA, Oct. 
19-23, 2003. 
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Appendix III: Summary of two published articles associated with this project 
 
Y. Chen and B.F. Hobbs, "An Oligopolistic Power Market Model with Tradable NOx 
Permits," IEEE Trans. on Power Systems, 20(1): 119-29, 2005 
 
Summary of analysis and findings: 
 
Around the world, the electric sector is evolving from a system of regulated vertically-
integrated monopolies to a complex system of competing generation companies, 
unregulated traders, and regulated transmission and distribution.  One emerging challenge 
faced by environmental policymakers and electricity industry is the interaction between 
electricity markets and environmental policies.  We use computational models formulated 
as linear complementarity problems (LCP) to study such interaction.  Models based on 
LCP formulations have been applied previously to assess the potential for exercise of 
market power in transmission constrained electricity markets.  In this particular 
application, we use the approach to assess the potential market power resulting from the 
interaction of pollution permit markets, i.e., the USEPA OTC NOx Budget Program, with 
electricity markets in the presence of market power.  Because the permits program is 
regional rather than national in scope, some power producers are relatively large 
consumers of permits (either in long or short position), and there could be interactions 
between market power in the permits and energy markets.  In our model, the producers 
with substantial capacity share are designated to exercise Cournot (quantity) strategy in 
electricity markets, and to utilize conjectured price response, where they conjecture their 
deviations from market equilibrium will affect prices in NOx permit markets.  The 
application is to the Pennsylvania – New Jersey – Maryland Interconnection (PJM) 
market during 2000, which is represented by a fourteen-node, eighteen-arc linearized DC 
load flow model.  A total of 730 generators are included in our analysis and the simulated 
period is approximated by 5-block step functions.  The results show that PJM market is 
relatively competitive during this period, as its prices are closer simulated competitive 
levels than to Cournot (oligopoly) prices.  The NOx market and Cournot energy markets 
influence each other in several ways.  One is that Cournot competition lowers the price of 
NOx permits, which in turn results in some high emissions producers actually expanding 
their output, contrary to simple Cournot energy-only markets.  The Cournot producers 
could be worse off if they naively behave as price takers in the NOx permits markets.  
Meanwhile, higher energy prices and lower NOx permit prices provide two reasons for 
smaller price-taking producers to expand energy generation.  Total NOx emission 
declines as a consequence of restraining output by Cournot producers.  In general, 
because pollution permits are an important cost and their price is volatile, high 
concentration in the market for such permits can exacerbate the effects of market power 
in energy markets. 
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Y. Chen, B.F. Hobbs, S. Leyffer and T. Munson, "Solution of Large-Scale Leader-
Follower Market Equilibria Problems: Electric Power and NOx Permit Markets," 
Accepted for Computational Management Science. 
 
Summary of analysis and findings: 
 
The models formulated as Stackelberg game is especially appropriate to simulate 
sequential-moved or leader-and-follower games.  However, the real-world large-scale 
applications are generally limited.  One reason is that the resulting problems violate 
several regularity conditions, and it makes computational extremely difficult.  In the 
previous analysis, an ad-hoc conjectural price response, which is based on a 
parameterized linear function to represent an agent’s belief about its rivals’ reply to its 
own action, is used to assess the interaction of pollutions emissions and electric market.  
Although the resulting linear complementarity problems are relatively easy to solve using 
commercial solver PATH under the GAMS modeling environment, the solutions from 
models are not entirely satisfactory on the economic ground.  This paper investigates the 
ability of the largest producer in an electricity market to manipulate both the electricity 
and emission allowances markets to its advantage.  A Stackelberg game to analyze this 
situation is constructed in which the largest firm plays the role of the leader, while the 
medium-sized firms are treated as Cournot followers with price-taking fringes that 
behave competitively in both markets. Since there is no explicit representation of the 
best-reply function for each follower, this Stackelberg game is formulated as a large-scale 
mathematical program with equilibrium constraints. The best-reply functions are 
implicitly represented by a set of nonlinear complementarity conditions. Analysis of the 
computed solution for the Pennsylvania - New Jersey - Maryland (PJM) electricity 
market shows that the leader can gain substantial profits by withholding allowances and 
driving up NOx allowance costs for rival producers.  The PJM regional market is 
represented by a fourteen-node, eighteen-arc linearized DC load flow model.  A total of 
730 generators are included in our analysis and the simulated period is approximated by 
5-block step functions.  The allowances price is higher than the corresponding price in 
the Nash-Cournot case, although the electricity prices are essentially the same. In 
particular, the largest generator can withhold 7% of its total allowances in 2000 and 
maintains the allowances price at the competitive level. Such an action increases its 
rivals’ production cost considerably.  Consistent with oligopoly theory, the competitive 
generators generally benefit from higher power prices, while other non-Stackelberg 
strategic generators experienced shrinkage of the market share and profit losses.  
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