Oligopolistic Power Markets with Transmission, Forward Contracts, Reserve Markets and NO_x Permits

Yihsu Chen Benjamin F. Hobbs

INFORMS Annual Conference Denver, CO

Dept. Geography & Environmental Engineering Whiting School of Engineering The Johns Hopkins University Baltimore, MD USA

Acknowledge: National Science Foundation (NSF) and US Environmental Protection Agency (EPA) STAR Program

Overview of Questions

Model Structure and Computational Approach

Application: Interaction of PJM Electricity and USEPA NO_x Budget Program

- 1. Background
- 2. Assumptions

Results

- 1. Comparison of perfect competition and Cournot
 - a. Price
 - b. Social welfare
 - c. Productive inefficiency
 - d. Strategy rationale
- 2. Comparison of Cournot with & without forward contracts
- 3. Sensitivity Analysis

Questions of Interest

- Given the interactions of power (spinning reserves and forward contracts) and NO_x markets, compared with competitive case:
 - What is the impact on power and NO_x prices?
 - What is the overall <u>social welfare</u> impact?
 - What is the magnitude of productive inefficiency?
 - What is the <u>rationale</u> for players' behavior in power and NO_x market?

Model Structure and Computational Approach: Direct Solution of Equilibrium Conditions

- 1. Identify players in the markets and write down their optimization problems;
- 2. Derive first order conditions;
- 3. Impose market clearing conditions;
- 4. Solve model by Complementarity solver PATH

Application Background PJM Market and USEPA NO_x Program

PJM Market (2000)

- Peak Load 53,000 MW
- Average Load-weighted Price 30.7 [\$/MWh]
- Moderate Concentrated-HHI (hourly) (avg. roughly 1,500)
- 14 node, 18 arc system
- 9 producers

USEPA NO_x Program

- Cap-and-Trade
- May 1st Sep. 30th (3,672 hrs)
 - Approximated by a 5-block
- Nine States participated in 2000

Scenarios Investigated

Perfect competition (COMP)

 Price-taking behavior in power & permits markets

Oligopoly with forward contracts in both markets (<u>COURNOT</u>)

For 6 largest producers:

- <u>Cournot</u> strategy in electricity market
- Pricing taker in reserve market
- <u>NO_x conjectured pricing</u> in NO_x market
 - NCP₂₋₇ =0.1 [(\$/ton)/ton]

NO_x Conjectured Pricing

q_{nox} (tons)

q_{nox} : Net position in NO_x permit market Sell/Long (+) and Buy/Short (-)

Mathematical Formulation Suppliers

+ Power	MAX _{s_{if}}	$\mathbf{x}_{g_{if}},\mathbf{r}_{if}\sum_{i} [\mathbf{P}_{i} (\mathbf{s}_{if} + \sum_{g\neq f} \mathbf{s}_{ig}) - \mathbf{W}_{i}](\mathbf{s}_{if} - \mathbf{S}_{if}^{F})$
- Cost		$-[\boldsymbol{C}_{if}(\boldsymbol{g}_{if}) - \boldsymbol{W}_{i}\boldsymbol{g}_{if}]$
+ Res		$+\sum_{i} \boldsymbol{p}_{t}^{R} \boldsymbol{r}_{if}$
- Permit		$-\boldsymbol{p}^{NO_x}(\mathbf{e}_f^{NO_x}-\overline{\mathbf{Q}}_f^{NO_x})$
Gen	S.T.:	$oldsymbol{g}_{if}+oldsymbol{r}_{if}\leq\overline{oldsymbol{G}}_{if},orall oldsymbol{i}$
Res		$r_{if} \leq \overline{R}_{if}, \forall i$
Balance		$\sum_{i} \mathbf{s}_{if} = \sum_{i} \mathbf{g}_{if}$
Conjecture		$\boldsymbol{p}_{f}^{N} = \boldsymbol{p}^{N^{*}} + \boldsymbol{NPC}_{f}(\boldsymbol{e}_{f}^{NO_{x}} - \boldsymbol{e}_{f}^{NOx^{*}})$
Non negati	ve	$\mathbf{s}_{if}, \mathbf{g}_{if}, \mathbf{r}_{if} \geq 0, \forall \mathbf{i}$

Arbitrageur

 $MAX_{a_i}\sum_i (\boldsymbol{p}_i^E - \boldsymbol{W}_i)\boldsymbol{a}_i$ **S.T.**: $\sum_{i} a_{i} = 0$

Consumers $\boldsymbol{p}_i^{\boldsymbol{E}} = \boldsymbol{P}_i^0 - \frac{\boldsymbol{P}_i^0}{\boldsymbol{Q}_i^0} (\boldsymbol{ts}_i + \boldsymbol{a}_i), \forall i$

ISO

 $MAX_{V_i} \sum_{i} W_{i} Y_{i}$ **S.T.**: $\sum_{i} PTDF_{ki} y_{i} \leq T_{k}, \forall k$

Market Clearing Conditions

Energy $\sum_{f} \mathbf{S}_{if} + \mathbf{a}_{i} - \sum_{f} \mathbf{X}_{if} = \mathbf{y}_{i}, \forall \mathbf{i}$ NOx $0 \leq \mathbf{p}^{N^{*}} \perp \sum_{f,i} (\mathbf{e}_{if}) - \mathbf{\overline{E}}_{f} \geq 0$

Reserve $0 \le \boldsymbol{p}^{\boldsymbol{R}} \perp \sum_{i,f} \boldsymbol{r}_{if} - \sum_{i,f} \boldsymbol{s}_{if} \boldsymbol{R} \boldsymbol{M} \ge 0$

Consistency $\mathbf{e}_{\mathbf{f}}^{NOx^*} = \mathbf{e}_{\mathbf{f}}^{NO_x}, \forall \mathbf{f}$

Price Comparisons I between Competitive and Cournot w/ forward contracts

Welfare Analysis I: Compared to competitive scenario

- SW (social welfare) declines by 0.5%
- CS (consumer surplus) goes down by 0.56%
- **PS** (producer surplus) goes up by 22 M\$ as producers exercise market power
- ISO revenue goes down by 40% as less power being transferred

Efficiency Comparison I : Compared to competitive scenario

Productive Inefficiency is defined as the increase in cost relative to least-cost means of serving MW load

Market power leads to: 20 M\$ (or 1.68%) production inefficiency over five-month period (cheap generation is withheld by Cournot firms)

Player's Strategies

PECO: largest in power and longest in permit •Cournot in power •conjectured price response in permit market Conectiv: small fringe •competitive

Price Comparisons II between Cournot w/ and w/o forward contracts

Welfare and Inefficiency Analysis II: Compare Cournot w/ contracts

- CS (consumer surplus) in w/o forward contracts case goes down by 29.6%
- ISO revenue in w/o forward contracts case goes up by 28%
- Productive inefficiency in w/o forward contracts case increases by 64 M\$ (or from 1.6% to 7.3%)

Sensitivity Analysis

- Explore the potential of market power in an environment in which supply of permits is limited
- Assumptions

Similar to Cournot scenario with forward contracts but

- NCP_{PECO}=1.5 [(\$/ton)/ton]
- An equal reduction of 20% of permits by each firm in the market

Player's Strategies II

PECO: largest in power and longest in permit

•Cournot in power

•conjectured price response in permit market Conectiv: small fringe

competitive

Compared with NCP_{PECO}=0.1 [(\$/ton)/ton]

PECO expands output by 7.3%, restricts sale of **NO_x permits by 45%**

PECO's profits goes up by 2.7 M\$

Player's Strategies II

PECO: largest in power and longest in permit •Cournot in power •conjectured price response in permit market Conectiv: small fringe •competitive

Compared with NCP_{PECO}=0.1 [(\$/ton)/ton]

PECO expands output by 7.3%, restricts sale of NO_x permits by 45%

PECO's profits goes up by 2.7 M\$

 $p^{E} \uparrow, p^{NO_{x}} \uparrow$

Conclusion

- Interactions between electricity and NO_x market can be investigated by Cournot and conjectured NO_x pricing assumptions in a large-scale model
- Detailed representation of market allows a variety of welfare and efficiency analyses, and to gain insight on players' strategy
- Explore market power in a two-stage game structure where in the fist stage, firms purchase allowances through a central auction; and compete in the power markets in the second stage;

Conclusion

- Interactions between electricity and NO_x market can be investigated by Cournot and conjectured NO_x pricing assumptions in a large-scale model
- Detailed representation of market allows a variety of welfare and efficiency analyses, and to gain insight on players' strategy
- Explore market power in a two-stage game structure where in the first stage, firms purchase permits through a central auction; and compete in the power markets in the second stage

QUESTIONS AND COMMENTS?

