An Oligopolistic Electricity Market Model with Tradable NO_x Permits

Yihsu Chen Benjamin F. Hobbs

Dept. Geography & Environmental Engineering
Whiting School of Engineering
The Johns Hopkins University
Baltimore, MD USA

Outline

- I. Overview of Questions
- II. Model Structure and Computation Approach
- **III. Application**

Interaction of PJM Electricity and USEPA NO, Budget Program

- a. Background
- b. Assumptions

IV. Results

Comparison of perfect competition with different scenarios

- a. Price
- b. Social Welfare
- c. Productive and NO_x Trading Efficiency
- d. Strategy Rationale

V. Conclusion

10 MINUTE TALK, WILL TAKE TOO LONG (YOU SHOULD PRACTICE YOU What might be the the transfer to the the state of the st

- Generation Strokture (Delter Lewise Line) Divided the Sure Mentil K.F.
- Transmission investment (new lines ACTIONS
- Market rules
 - Transmission pricing (taxes, congestion pricing, counterflows, zonal ...)
 - Access (retail load, generators, arbitragers ...)
 - Environmental markets (green certs., CO2 trading ...)

...upon...

- Economic efficiency (allocative & productive efficiency)
- Income distribution (TSO revenues, profits, consumer surplus)
- Emissions

...considering generator strategic behavior?

- Bidding
- Capacity withdrawal
- Manipulation of transmission (deliberate congestion, decongestion)
- Manipulation of emissions markets (withholding of allowances)*****

II. Model Structure and Computational Approach: Direct Solution of Equilibrium Conditions

Producer A

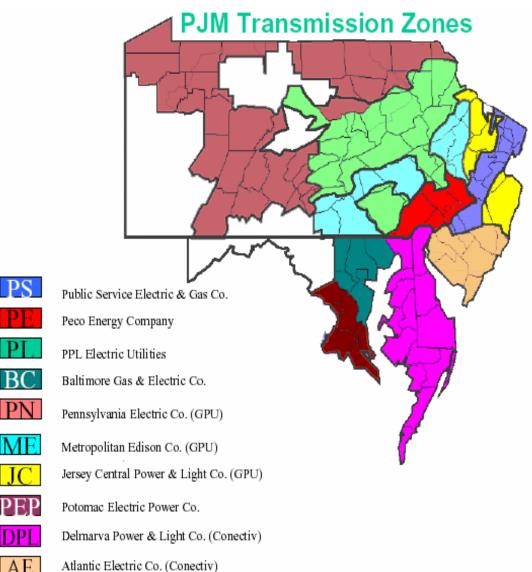
Choose gen & sales to maximize profit s.t. capacity

⇒ 1st order conditions

Producer B

Choose gen & sales to maximize profit s.t. capacity

⇒ 1st order conditions


ISO: Choose Transmission Flows to Max Value of Network s.t. transmission constraints⇒ 1st order conditions

Consumers: Max Value - Expenditures (Demand Curve)

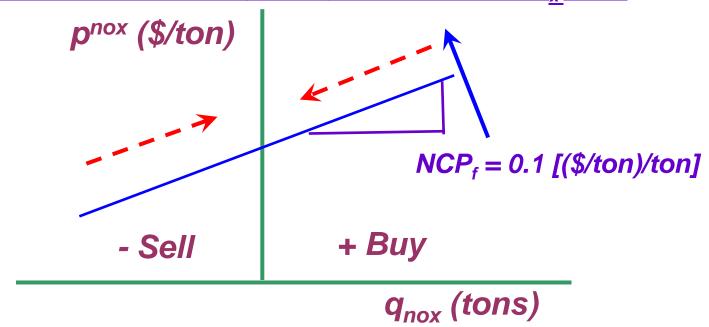
Market Clearing Conditions

- 1. Derive first-order conditions for each player
- 2. Impose market clearing conditions
- 3. Solve resulting system of conditions (complementarity problem)

III. Application Background PJM Market and USEPA NO_x Program

PJM Market

USEPA NO_x Program


Need to give credit for Figure ...

Model Assumptions

- Network and Load
 - Load duration curve (LCD) approximated by 5 blocks
 - Only 500 kV line → 14 nodes, 18 arcs
 - No transmission losses
 - Power Transfer and Distribution Factors (PTDFs)
- Producers
 - 791 generators
 - 6 largest producers (capacity share: 4% to 18%)
 - Cournot strategy in electricity market
 - Conjectured pricing in NO_x market
 - Remaining produces price takers (3 producers)
- Consumer
 - Linear demand Curve
- ISO
- Importer

NO_x Conjectured Pricing

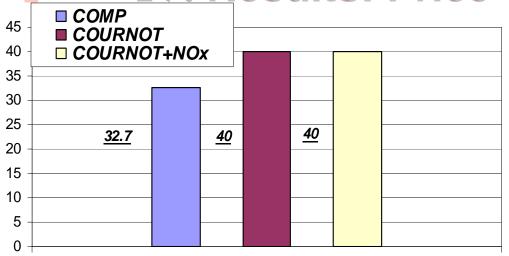
Producer's belief regarding its action on NO_x price

 qNO_x : Net Position in NO_x permit market \rightarrow Sell (-) and Buy (+)

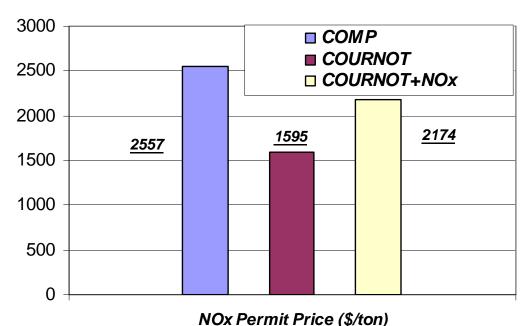
Scenarios Investigated

A. Perfect competition (COMP)

Price-taking behavior in power & allowances markets


B. Oligopoly in electricity market (<u>CONOURT</u>) Cournot strategy for 6 largest in electricity market

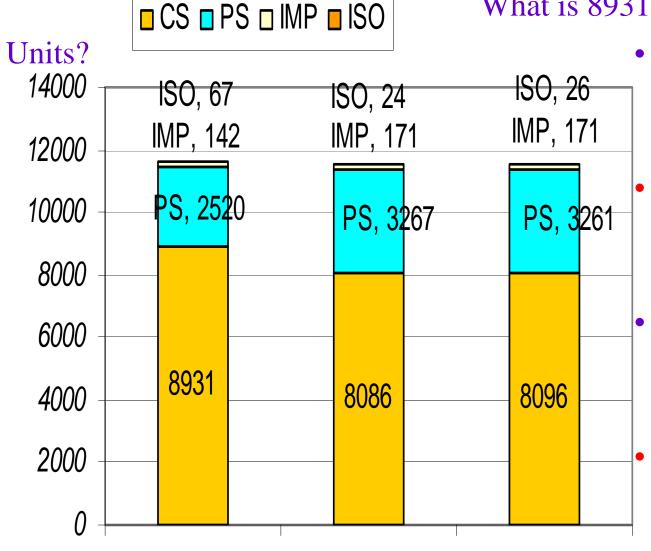
No Conjectured NO_x Pricing


C. Oligopoly in both markets ($CONOURT+NO_x$)

- For 6 largest producers: <u>Cournot</u> strategy in electricity market plus <u>Conjectured NO_x Pricing</u> in NO_x market
 - NCP_{2,3,5,6,7} =0.1 [(\$/ton)/ton]
 - NCP₄ = 1.5 [\$/ton)/ton] ← The largest producer with a long position in the NO_x market

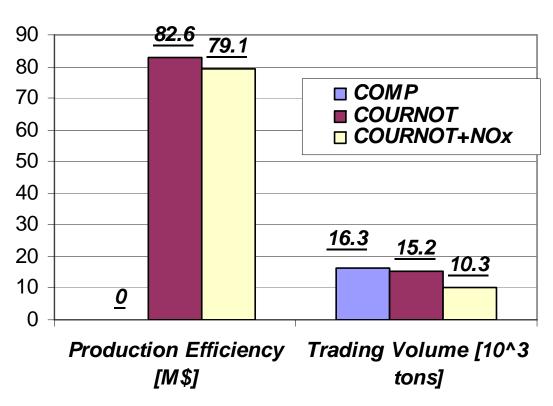
IV. Results: Price Comparison

Sale-Weighted Electricity Price(\$/MWh)



• Price of electricity goes up as producers restrain output

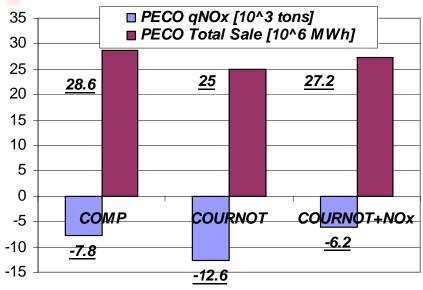
- Peak period electricity price increase by 37% and 34% compared with COMP for COURNOT and COURNOT+NO_x, respectively
- Price of NO_x decreases as a result of producers reducing energy output, suppressing NO_x permit demand
- Producer 4 drives up NO_x
 permit price if strategic in
 emissions market (HOW??)

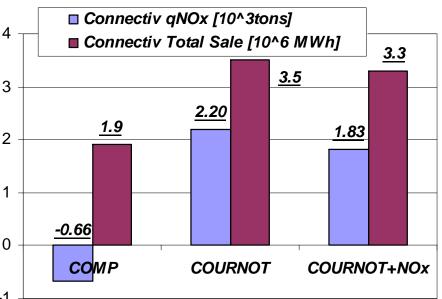

Welfare Analysis: Compared to Competitive Scenario

Can't see total welfare (should show) What is 8931? (Label as CS)

- SW (social welfare)
 declines by 112 and
 106 [M\$/yr] for
 Cournot solutions
- PS (producer surplus) goes up as producers exercise market power
- IMP (Importer)
 revenue goes up as
 electricity prices go
 up
- ISO revenue goes down as less power being transferred

Efficiency Comparison Compared to Competitive Scenario


Definition of measurement:


- a. <u>Productive Inefficiency</u> = $(GC_i - GC_{COMP} | load^*)[M$]$
- **b.** NO_x Trading Inefficiency = $(Trade^{NOx}_i - Trade^{NOx}_{COMP})$ [10^3 tons]

Market power leads to:

- a. A 8.0% and 7.7% of productive inefficiency for COUNOT and COURNOT+NO_x
- b. A 6.8% and 36.5% decrease in NO_x trading volume

Player Strategies in NOx Market

(Net Sale of Permits - qNOx [tons]: Sell (-)/Buy(+))

- PECO: Compare with COMP
 - Restrain output and sell more
 NO_x permits in COURNOT →
 price falls from \$2,557 to \$1,595
 - Expand output and sell fewer
 NO_x permit in COURNOT+NO_x
 →Price falls only to \$2,174
- Connectiv: Compare with COMP
 - Increase output by <u>84%</u> due to higher electricity prices in COURNOT → become net buyer in NO_x market
 - Shrink output by 6% in
 COURNOT+NO_x compared with
 COURNOT due to higher costs
 associated with NO_x permits

V. Conclusion

- Interactions between electricity and NO_x market can be investigated by Cournot and conjectured NO_x pricing assumptions in a large-scale model
- Detailed representation of market allows a variety of welfare and efficiency analyses, and to gain insight on players' strategy
- The model is capable of answering various policy questions, such as:
 - "What would the NO_x price be if the CAP is imposed over entire year?" This is not an exciting conclusion to end with. Have more questions pointing to future research (e.g., optimal manipulation of NO_x market)