Applications of Complementarity-Based Models of Transmission-Constrained Power Markets: B-NL Market Integration & Power-NOx Market Interactions in PJM

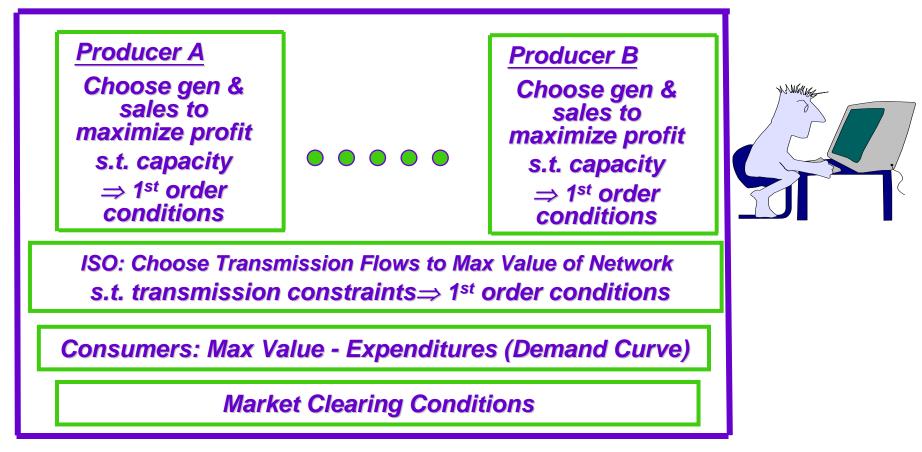
Yi-Hsu Chen

The Johns Hopkins University, Baltimore, MD

Fieke A.M. Rijkers

Dienst Uitvoering en Toezicht Energie (Dte), Den Haag, NL

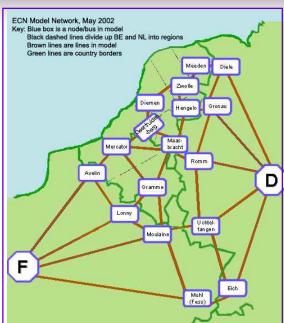
Benjamin F. Hobbs

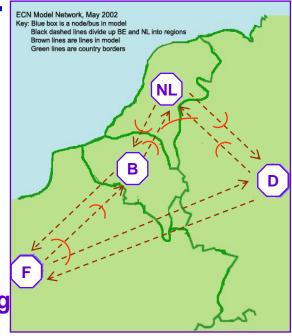

The Johns Hopkins University, Baltimore, MD California ISO Market Surveillance Committee, Folsom, CA

"Hartilijk danke" to NSF, ECN, & FERC for support; Todd Munson, Sven Leyffer, & Adrian Wals for their collaboration

Specific Questions:

- What are the benefits of Belgian-Dutch power market integration?
 - Methodology: COMPETES (a LCP Cournot model of transmission-constrained markets)
 - Effect of inefficient transmission & arbitrage
- What strategies might generators use to exploit the interaction of electric power and NO_x markets?
 - Methodology: MPEC Stackelberg model of NOx and power markets (transmission constrained)
 - Demonstrates ability to solve large scale (~20,000 variable) MPECs


Computational Approach: Direct Solution of Equilibrium Conditions



- 1. Derive first-order conditions for each player
- 2. Impose market clearing conditions
- 3. Solve resulting system of conditions (*complementarity problem*) using **PATH**

B-NL Analysis COMPETES Market Structure

- Cournot generators compete in bilateral market
- Competitive arbitragers in some markets
- Two transmission pricing systems:
 - -Physical network
 - Linearized DC load flow
 - Several nodes per country
 - -Path-based representation
 - One node per country → one market price per country
 - Interfaces defined between countries
 - Crediting for counterflows (netting vs. no-netting

COMPETES

Inputs

- Demand
 - 12 periods \rightarrow 3 seasons, 4 load periods
 - Allocated to the nodes
- Generation
 - 15 large power generating companies
 - 4 NL, 1 B, 2 F, 8 G
 - Plus competitive fringe
 - 5272 generating units
 - MC based on heat rate and fuel type

Congestion management B ↔ NL Current Auction System

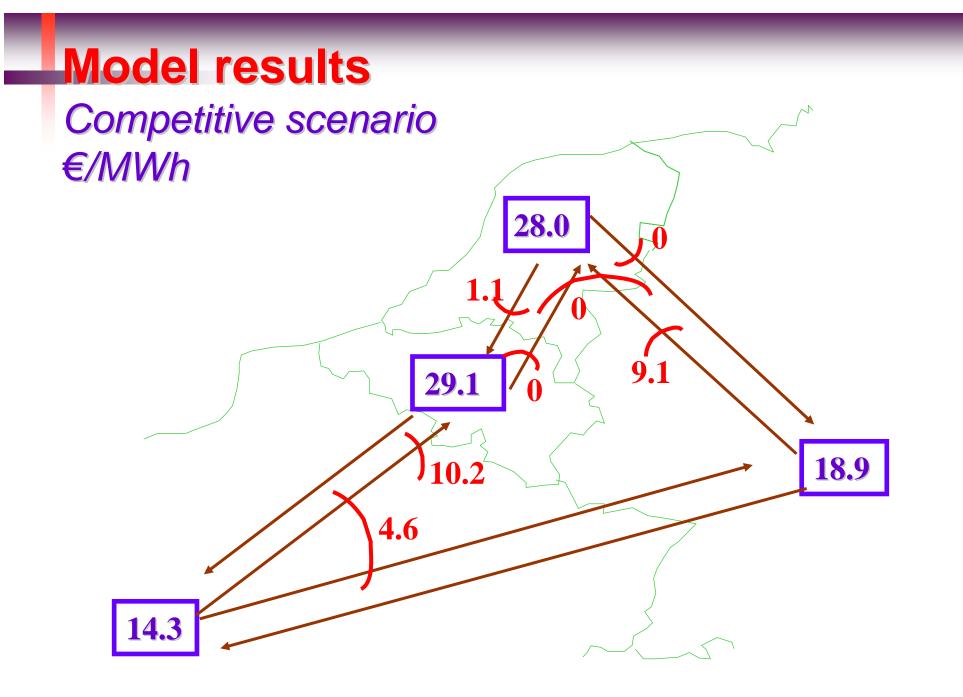
- Yearly, monthly, daily
- Available capacity for auction [www.tsoauction.nl]
 - B NL: 1150 MW
 - Germany NL: 2200 MW
- Total import capacity to NL ≤ 400 MW per party
- Price set by lowest accepted bid
- Daily auction takes place before APX settles

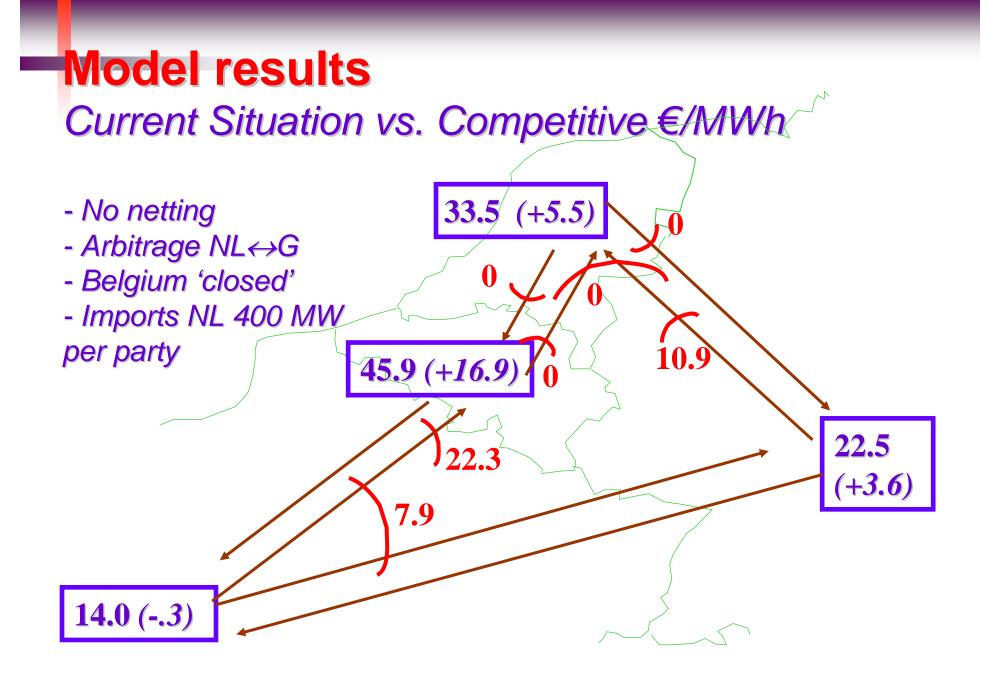
Congestion management B ↔ NL *Proposal for market integration*

- Single market
 - One market price
 - TSO responsible for re-dispatch
 - Payments for constrained-off or -on
- Market Coupling (Splitting)
 - Similar to the NordPool
 - If Congestion: two separate market prices

Effects of Market Coupling Differences relative to current situation

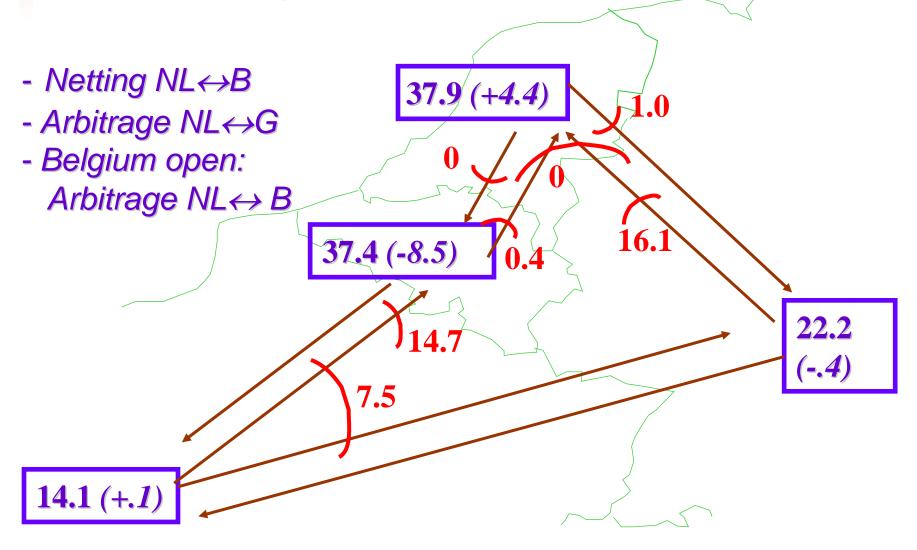
1) Increased market access into Belgium

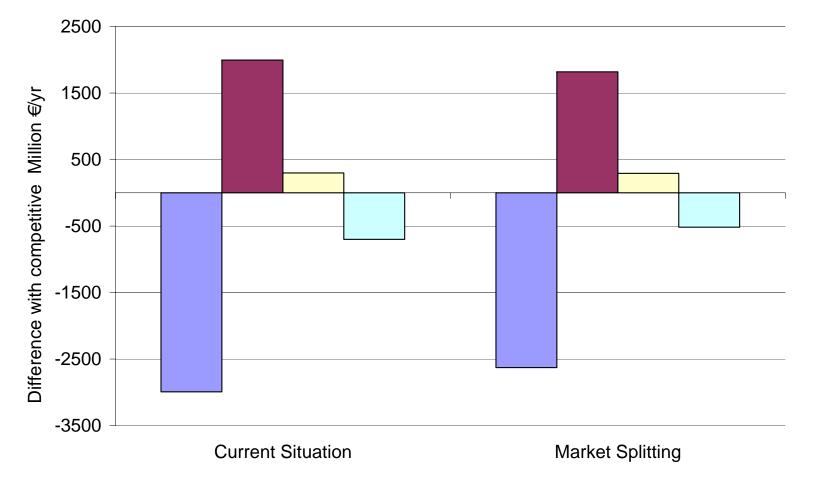

- For (foreign) Generators and
- For Traders \rightarrow Introduce arbitrage


2) Netting of transmission capacity

3) Efficient co-ordination of 'Auction' and APX

Effects of Market Coupling Definition of scenarios

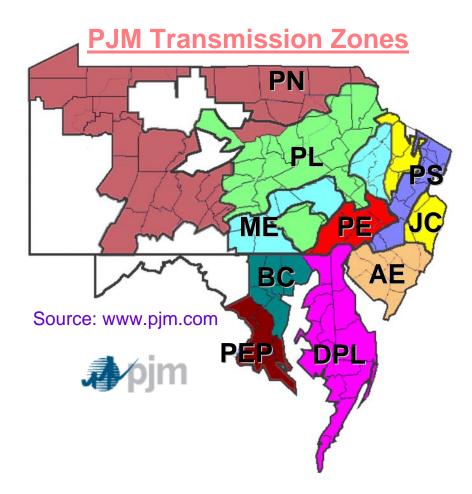

		Import cap on firms			Import cap on arbitrageurs			Netting
		$B \rightarrow NL$	NL → B	NL → B Electrabel	$B \rightarrow NL$	NL → B	$G \leftrightarrow NL$	
Competitive		No limit	No limit	No limit	No limit	No limit	No limit	Yes
C O U R	Current situation	400	0	950	0	200	No limit	No
N O T	Market splitting	None*	None*	None*	No limit	No limit	No limit	B ↔ NL



Model results

Market Splitting vs. Current Situation €/MWh

Welfare Compared to Perfect Competition


Consumer Surplus Generators profit Transmission revenue Welfare

Effects of Market Coupling

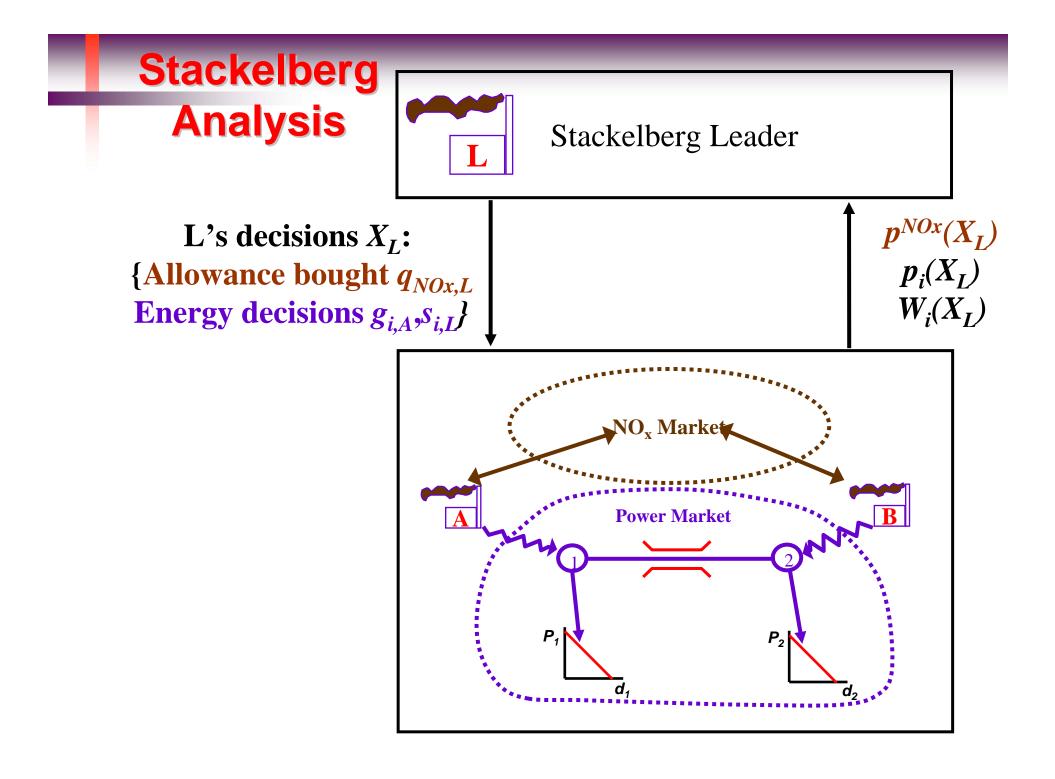
- Market Coupling affects prices, increases welfare (+ 182 M∉yr more than current)

 Induced by lower prices in Belgium
 Increased welfare is mainly in Belgium
- What is "in it" for the Netherlands?
 - Profits Dutch generators increase
 - But consumer surplus decreases more

PJM Power Market & USEPA NO_x Program Analysis

Can the NOx market be profitably manipulated by a large generator who is long on allowances?

PJM Market


- Peak Load 50,000 MW
- Average Load-weighted Price -30.7 \$/MWh

USEPA *NO_x* **Program**

- Cap-and-Trade
- 9 states participated in 2000
- Total Allowances: 195,401 tons

Model Assumptions

- Market structure
 - Generators compete to sign bilateral contracts
 - ISO provides transmission services between nodes
- Network
 - 500 kV network: 14 nodes, 18 arcs, no transmission losses
 - Linearized "DC" load flow approximation: Power Transfer Distribution Factors (PTDFs)
- Producers
 - 791 generation units
 - 6 largest producers (capacity share: 4% to 18%)
 - Largest is Stackelberg leader
 - Others:
 - Cournot strategy in electricity market
 - Price taking in NO_x market
 - Remaining producers are price takers (3 producers)
- Consumers
 - Linear demand at each node
 - 5 demand periods in ozone season
- ISO allocates transmission capacity to highest value

Stackelberg Leader's Problem

• The firm with a longest position in NOx market and greatest power sales is designated as the leader:

 q^{w} = Stackelberg's NO_x withholding variable [tons] $\overline{q}_{f}^{NO_{x}}$ = Firm's available NO_x allowances [tons]

$$\begin{aligned} \mathsf{MAX}_{s_{if}, g_{if}, q^{W}} \sum_{i} \{ [\mathbf{p}_{i} (\mathbf{s}_{if} + \sum_{g \neq f} \mathbf{s}_{ig}) - \mathbf{W}_{i}] \mathbf{s}_{if} - [\mathbf{C}_{if} (g_{if}) - \mathbf{W}_{i}g_{if}] \\ &- \mathbf{p}^{NO_{x}} [\mathbf{E}_{f}^{NO_{x}} - (\overline{\mathbf{q}}_{f}^{NO_{x}} - \mathbf{q}^{W})] \} \\ \mathbf{s.t.:} \mathbf{g}_{if} \leq \mathbf{CAP}_{if}, \forall \mathbf{i} \\ &\sum_{i} \mathbf{s}_{if} = \sum_{i} \mathbf{g}_{if} \\ &\mathbf{s}_{if}, \mathbf{g}_{if} \geq 0, \forall \mathbf{i} \\ &0 \leq \mathbf{q}^{W} \leq \overline{\mathbf{q}}_{f}^{NO_{x}} \\ &0 \leq \mathbf{p}^{NO_{x}} \perp \sum_{f} (\mathbf{E}_{f}^{NO_{x}} - \overline{\mathbf{q}}_{f}^{NO_{x}}) + \mathbf{q}^{W} \leq 0 \end{aligned}$$
eOther Producer Complementarity Equilibrium Conditions

Market Clearing Conditions

ISO Optimization Problem Quadratic Loss Functions

ISO's decision variables:

y_i = transmission service from hub to *i*

- q_i^{Losses} = generation purchases from node *i* (to make up losses)
 - t_{ij} = positive flow from *i* to *j*
- ISO's maximizes the "value of services" :

 $\begin{array}{ll} \textit{MAX} & \pi_{ISO}(t_{ij}, y_i, q_i^{\textit{Losses}}) = \sum_i (W_i y_i - p_i q_i^{\textit{Losses}}) \\ \textit{s.t.:} y_i - q_i^{\textit{Losses}} + \sum_{j \in J(i)} (t_{ij} - (1 - L_{ji} t_{ji}) t_{ji}) \leq 0, \quad \forall i \quad \textit{Kirchhoff's Current Law} \\ \sum_{(i,j) \in v(k)} R_{ij}(t_{ij} - t_{ji}) = 0, \quad \forall k, (i,j) \in v(k) \quad \textit{Kirchhoff's Voltage Law} \\ \sum_i y_i = 0 \quad \textit{Services Balance} \\ 0 \leq t_{ij} \leq T_{ij}, \quad \forall i, j \quad T_{ij} = capacity of line (i,j) \\ q_i^{\textit{Losses}} \geq 0, \quad \forall i \end{array}$

- Solution allocates transmission capacity to most valuable transactions

 Define the model's KKTs (complementarity conditions), one per variable <u>x</u>_{iso}

Model Statistics

- 18,618 variables; 9739 constraints
 - Order of magnitude larger than test problems in R. Fletcher and S. Leyffer, "Numerical Experience with Solving MPECs as NLPs," Univ. of Dundee, 2002
- Solved by PATH and SQP (SNOPT, FILTER) (Thanks to Todd Munson & Sven Leyffer!)
- 9,536 seconds (1.8 MHz Pentium 4)

- Other MPECs took much less time

Stackelberg Results

Compared to the Cournot Case:

- Stackelberg leader:
 - withholds 5,536 tons of allowances (7.2% of total)
 - ... increasing NO_x price from 0 to 1,173 [\$/ton]
- Output:
 - − other producers shrink their power sales (87.4 \rightarrow 83.5 x10⁶ MWh) due to increased NO_x price
 - ... while the leader expands its output (24.6 \rightarrow 28.7 x10⁶ MWh)
- Profit:
 - Stackelberg leader earns more profit (893 \rightarrow 970 M\$)
 - ... at the expense of other producers (2394 \rightarrow 2273 M\$)
- Consumers:
 - are only marginally better off with a gain of 14 [M\$] in consumer surplus, as power prices almost unchanged

Conclusions

- Detailed market representations make possible:
 - a variety of welfare and efficiency analyses,
 - insights on player strategies,
 - detailed distributions of impacts of policy
- B-NL analysis shows how models can quantify benefits of improving market efficiency
- Large scale Stackelberg models can be solved
 - Nonlinear (lossy) DC load flow
 - Leader maximizes subject to Cournot/fringe market equilibrium
 - Manipulating allowances market is profitable