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Abstract  
 
We wish to investigate climate change-driven effects on electricity demand and production.  
We model hourly loads for the electricity region and the individual electric utilities of the 
Pennsylvania, New Jersey, and Maryland Interconnection (PJM) from January 1st, 1998 
through April 30th, 2001.  We create a database of hourly electricity loads for PJM, by 
individual utilities and in aggregate.  We then estimated a set of hourly forecasting models 
incorporating autoregressive components, heating and cooling degree temperature effects and 
trading day variation for holidays and weekends.  We use the models’ short-run elasticities to 
perform a simulation of a 2°F increase in daily temperature, finding a small but positive impact 
on electricity demand. 
 
We first link specific demand effects to hypothesized climate change, utilizing forecasts of 
end-use equipment stock and electric load shape.  These models then project long run 
responses to climate change.   

 
We model hourly loads for the Pennsylvania, New Jersey, and Maryland Interconnection, PJM, 
electricity region and the individual electric utilities in that region from January 1st, 1998 
through April 30th, 2001. PJM is the largest centrally dispatched electric system in North 
America and the third largest in the world behind France and Tokyo. PJM was the first 
Independent System Operator (ISO) in the United States. The PJM service area includes all or 
part of Delaware, the District of Columbia, Maryland, New Jersey, Pennsylvania, and Virginia. 
Nearly 9% of the U.S. population resides in the service territory. The peak energy and total 
energy consumed represents about 7.5% of the national total. Nearly 8% of the nation’s 
generating capacity is located in PJM. Planners at the ISO and owners of generators need to 
forecast 24-48 hours ahead. Estimates of seasonal and temperature sensitivities are crucial in 
those projections. We build hourly models by load region and evaluate the forecasts 24-48 
hours ahead. 
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I. Introduction 

 

 

The role of climate change-driven effects on electrical energy demand and production is the 

focus of this modeling effort. We are undertaking two general tasks. The first requires detailed, 

disaggregated models that can link hypothesized climate change perturbations to specific 

demand effects in the residential and commercial sectors.  This requires consideration of end-

use equipment penetration, load shape forecasting, and creation of detailed (one-hour) short-

term forecasts.  The end-use and load shape forecasts will be used to explore general 

relationships between climate and energy use on a regional scale. These models will be used in 

developing long-term projections of human adaptation to climate change and variability.  

These projections will then be translated into hourly load forecasts that fully reflect the 

variability of loads and their correlations with the meteorological conditions that also affect 

pollutant transport and transformation. These forecasts will be used to analyze interactions 

between climate, pollution, and energy use on a detailed temporal scale.  In the second general 

task, we will consider the impact of unique events and conduct econometric analyses of the 

effects of pollution alerts on hourly electricity usage. 

 

II. Literature Review (very brief) 

 

The objective is to produce hourly models of electricity load (consumption) for the electricity 

dispatch and generation model. These will be used to construct load duration curves.  

  

In general, aggregate analyses have found that commercial and residential uses are 

much more sensitive to temperature increases than industrial uses, justifying the focus of this 

proposal on the former.  These studies have usually concluded that climate warming would 

produce a few percentage point increase in cooling requirements, and a similar decrease in 

heating requirements (Scott et al., 1994; Morris et al., 1996; Sailor and Munoz, 1997); the 

canceling of the two effects often implies that the net impact on annual energy use may be 

relatively small (e.g., Darmstadter, 1993).  As an example of such a study, Baxter and Calandri 
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(1992) projected that a 1.9o C warming would increase California’s annual electricity 

requirements by 2.6%.  What is more relevant, however, is how that change is distributed 

within the year.  In particular, the greatest increases are likely to occur during weekdays during 

the air conditioning season, precisely at those times that tropospheric ozone violations occur.  

For instance, Baxter and Calandri’s (1992) analysis indicates that their assumed 1.9o C increase 

would magnify peak summer electricity demands by 3.7%.  It is possible that the proportional 

increase during periods of high ozone may be even higher; however, no studies have analyzed 

climate’s effect on energy demands on a fine enough temporal scale to consider this 

possibility.  One of this project’s purposes is to fill that gap. 

 

The result of using load duration curves in a long-run production simulation model is a set of 

estimates of average cost and emissions by generating unit type for a given period of time.  

This will permit a general assessment of the strength of the linkage between regional climate 

change and emissions of criteria pollutants.  However, because of the high correlation between 

time varying electricity demands (and thus emissions) and the meteorological conditions that 

influence ambient pollutant concentrations, the impact of that linkage upon concentrations and 

ensuing health effects must be based upon a detailed chronological simulation of both power 

system operations and pollutant transport and transformation. Utility experience across the 

U.S. shows that variations in weekday demands are most strongly associated with temperature, 

although wind, humidity, and cloud cover are also factors that are frequently considered in 

short-term models [Liu et al., 1996].   Typically, 80% or more of the variation is associated 

with weather, and for systems we have studied, peak electric demands in the summer can 

easily vary by 25% or more because of day-to-day changes in temperature [Hobbs et al., 1998].   

 

III. Data 

 

We have collected hourly loads for the Baltimore Gas & Electric Company (BGE) load region 

within the Pennsylvania, New Jersey, and Maryland Interconnection, PJM, from January 1st, 

1998 through April 30th, 2001. The source for the historical data is from the PJM web-site 

http://www.pjm.com/market_system_data/system/historical.html. BGE has been operating for 

more than 180 years. It services more than 1.1 million electric customers and 580,00 gas 
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customers. The load region is about 2,300 square miles including Baltimore City and all or part 

of 10 central Maryland counties. Figure 1 shows the BGE load region. BGE was a traditional 

vertically integrated utility that generated and delivered electricity until July 1st, 2000. 

Constellation Energy Group, the holding company formed a year earlier for BGE, transferred 

the generating to two competitive affiliates. There are 1,200 miles of transmission lines and 

more than 21,000 miles of overhead and underground distribution lines in the load region. 

 

PJM is the largest centrally dispatched electric system in North America and the third largest in 

the world behind France and Tokyo. PJM was the first Independent System Operator (ISO) in 

the United States. The PJM service area includes all or part of Delaware, the District of 

Columbia, Maryland, New Jersey, Pennsylvania, and Virginia. Nearly 9% of the U.S. 

population resides in the service territory. The peak energy and total energy consumed 

represents about 7.5% of the national total. Nearly 8% of the nation’s generating capacity is 

located in PJM.  

 

We assembled the hourly database for BGE from the PJM website. Table 1 presents summary 

statistics for hourly loads from January 1st , 1998 through April 30th, 2001. There are 1216 

individual hours. The highest average loads are between 7pm and 10pm (hours 19-21) and are 

above 4,000Mw. The lowest average hourly loads are in the early morning 3am to 6am; they 

are nearly 1.2Mw lower.  The standard deviation of loads is lowest during the early morning 

period. While the highest ranges above 700Mw between 3pm and 6pm. The maximum hourly 

loads above 6,000 Mw is from 2pm to 10pm, during this period the range from maximum to 

minimum is 3,200 to 3,500Mw. In the early morning period, the range is only 2,000 to 

2,500Mw. 

 

Hourly load statistics for January and July separately are given in Table 2. The respective load 

curves are graphed in Figures 2 and 3. Several interesting patterns emerge. As expected 

average hour loads in the morning hours until about 9am are higher in January or winter. They 

average 5%-20% higher with the largest differential at 7am, 3,970Mw against 3,262Mw. This 

is a function of the overnight temperatures and the start of the day effects. The same is true for 

the standard deviation.  Starting about 11am through 11pm average loads and standard errors 
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are higher in July. The differential extends to more than 1,000Mw in the afternoon and narrows 

to 400Mw in the late evening. Maximum loads in July are 1,000Mw larger than in June during 

the 11am to 11pm period. Plots of the load curves reveal further differences between January 

and July other than just magnitudes. In each figure, the monthly mean or average, maximum, 

and minimum load for a particular year is plotted. The load curves in January (and other winter 

months) appear to have two peaks. While in July there is a single large hump. 

 

Weather and temperature data was obtained from the NOAA data web-site, 

http://www.ncdc.noaa.gov/ . The weather station at Baltimore/Washington International 

Airport, WBAN#724060 and Call Sign KBWI, is the collection site in BG&E study region. 

While there are several other weather stations in the region, we decided to collect information 

from this one because of its central location to the population center(s) within the utility’s 

service territory.  The sample includes 29,184 hourly observations. There are 868 missing 

observations, about 3% of the total number. Appendix A details provides details about the 

hourly temperature series. (We collected data on wind speed, direction, and cloud cover, but 

did not use it the analysis here.)  

 

Since we are primarily interested in more extreme weather conditions we focus here on the 

months of January and July in the sample period. Table 3 contains the hourly temperature 

summary statistics for the two months respectively. Clearly for July, the highest temperatures 

are experienced from 1pm-4pm (13:00-16:00) and the coolest temperatures from 3am-5am. 

Warming begins between 6am and 8am and appears to increase faster than the cooling 

decreases in the late afternoon and evening. In January, the warmest temperatures are 

experienced between 1pm-4pm and the coolest from 4pm-8pm. 

 

Electricity consumption models are typically based on transformations of the temperature data 

into heating-degree day and cooling-degree day measures. These represent the impact of 

temperature fluctuations on electricity load in winter for heating needs and cooling needs in the 

summer. Heating degree measures are expressed in terms of the difference between 65F and 

temperatures below, while cooling-degree measures are the difference from 72F and 

temperatures above. When temperatures exceed the respective upper or lower bound the 
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measures are scored as zero. Hourly degree-day statistics are given Table 4 for January and 

July respectively. The hourly pattern is similar to that in the raw temperature data. 

 

Figures 4 and 5 plot the average of the hourly load curve and the average degree-day variables 

together for particular sub-samples in the same graph. Figure 4 contains four graphs for 

January 1998, 1999, 2000, and 2001. Figure 5 contains three graphs for July 1998, 1999, and 

2000.  Both demonstrate the importance of time of day and heating and cooling degree effects.  

 

A “camel back” effect is the best way to describe the January load curve. Loads start 

increasing about 6am and have their first peak an hour or two later. This peak is about 25%-

30% higher than the low at night. Then they decline about 10% until about 4pm. After which 

loads increase to their second and larger peak around 7pm. This peak is about 10% higher than 

the morning one. Loads decline dramatically after 10pm to the night time low(s). The heating 

degree-days curve has a single valley with a trough around 2pm. Between 10pm and 8am 

heating degree-day needs are at their highest, but they are offset by the decline in human and 

economic activity.   

 

A single trough characterizes the July load curve graphs, in Figure 5, in the early morning, 4am 

to 6am, coincident with the lowest cooling degree-day needs.  As mentioned earlier, loads and 

cooling-degree day needs increase dramatically between 7am and 11am. Cooling-degree day 

needs begin falling after 2pm-3pm. But the load curve persists near the peak until the evening 

and does not really begin to decline until about 10pm. There was a fair amount of variation in 

cooling degree averages across the three years; Summer 1998 and 1999 were much warmer 

than Summer 2000. 

 

IV. Models 

 

We specify hourly load models of electricity consumption for the Baltimore Gas and Electric 

region within PJM using the seasonal sub-samples of data from January 1st, 1998 through April 

30th, 2001. The individual hourly models have been estimated using ordinary least squares. The 

results from these models will be compared against those from a panel data model and an 
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artificial neural network model to be developed in the future. In addition, we will compare the 

results for the PJM models with other publicly available hourly load models. MetrixND 3.0 

(2001) and Eviews 4.1 are the software used for estimating the models and constructing the 

forecasts. 

 

Electricity loads are dependent on recent time of day and previous hour load effects, seasonal 

and daily weather patterns, weekday vs. weekend effects, and holidays. These latter two effects 

are known as trading day variation effects and are modeled using 0-1 dummy variables. A list 

of the deterministic variables is provided in Table 5. 

 

We use a simple standard seasonal time series modeling approach (Diebold 2001 and Abraham 

and Ledolter 1983) .The general model for each hour, h, in the summer is specified as follows: 
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The hourly models for the winter are specified similarly. Time subscripts are denoted using “h” 

and “t”. The “h” refers to the particular hour and “t” refers to the day in the sample. A white 

noise random disturbance term, e, is added onto the end of the equation. Dummy variables are 

used for capturing the day of the week and months. The hourly models are normalized on 

Mondays in June for the cooling-degree day models (and January for the heating degree day 

models.) There are seven dummy variables for Day; these include the remaining six days of the 

week plus a holiday dummy variable. The three monthly dummy variables capture the level 

effects for July, August, and September in the cooling-degree day models (and February, 

March, and December in the heating degree day models.)  

 

The effect for a Tuesday in June on electricity load in hour h is given by  

β0 + β1 + α1 * CDD + γ1 * CDD2.  The CDD terms are their mean values. The parameter β1 , 

represents the difference from Monday in June. Similarly, the electricity load in hour h on 

Fridays in July is captured by the expression β0 + β5 + δ1 + α5 * CDD + γ5 * CDD2
.  The Friday 
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effect comes from the β5 parameter and the δ1 parameter captures the difference between July 

and June. 

 

Heating-degree day and cooling-degree day effects were calculated using the hourly 

temperature recordings at the Baltimore Washington International Airport National Weather 

Station. Cooling-degree days, CDD, are defined as the difference between the temperature for 

that hour and 72F. If the maximum temperature did not exceed the threshold, the value for 

CDD is zero. Heating-degree days, HDD, are calculated as the difference between 65F and the 

temperature for the hour. If the minimum temperature was not below 65F, then a zero was 

assigned for HDD.  

 

Heating and cooling driven loads may rise faster than linearly with increasing and decreasing 

temperature. We account for this by using squared terms for heating- and cooling-degree days. 

The general model allows for separate monthly temperature sensitivities through interacting 

the degree day measures with dummy variables for each month: June, July, August, and 

September in the cooling-degree day case and January, February, March, and December in the 

heating-degree day case. 

 

Hourly loads are dependent on past loads; they are autocorrelated. The lagged polynomial 

operator, φ(L) = ( L+L2+L3+L24)  captures the effects from the previous three hours and for the 

same hour one day ago. 

 

The general model has 23 parameters to estimate. We test a number of hypotheses on the 

deterministic variables, on the temperature sensitivities, and both jointly in an attempt to derive 

more parsimonious models. The hypotheses are explained below in Tables 6 and 8, using a 

three column format. The first column gives the number identifying the hypothesis; there are 

total of forty alternative hypotheses or simplifications of the unrestricted model specification. 

The second column explains the null hypothesis in words, and the last identifies the restrictions 

on the parameters. 
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Tables 7 and 9 present respectively the p-values associated with the likelihood ratio statistics 

for the HDD and CDD model hypotheses tests. Again the format for the tables is identical. The 

hypothesis number from Tables 6 and 8 is given in the first column. The next twenty-four 

columns are for each of the 24 hours. There are 40 alternative or restricted specifications of the 

maintained hourly model. Thus, we have a total of 960 hypotheses tested.  

 

Because of the large amount of data in the table and the preference for presenting the results 

together, it is done so graphically. The graphical approach in Tables 7 and 9 is used to more 

easily identify a possible (general) class of model or models that are more parsimonious across 

all hours. A cell in the table is blank when the hypothesis cannot be rejected for that hour. 

When the hypothesis is rejected at the 10%, 5%, and 1% level an *, **, and *** is placed 

respectively in the cell. For example in Hour1 of Table 7, the “*” indicates that the first 

hypothesis, H0:1 is rejected at the 10% level. The null is that there are no day or holiday 

effects. Thus imposing this restriction significantly reduces the fit of the model. In Hour 2 of 

the same table, the second hypothesis, H0:3, has a blank cell. This implies that the null 

hypothesis (that there are no weekend effects for the winter season load model) cannot be 

rejected.  One general result stands out - removal of deterministic effects for days and months 

reduces the explanatory power of the models. In the first 15 models and in models 32 through 

38 where restrictions on the deterministic components are heaviest, there are rejections in more 

than two-thirds of the hourly models at the 1% and 5% level for both the heating and cooling 

degree-day experiments. Overall we found the hypotheses were not rejected in 38% of the 

winter season models and only 29% for the summer season models. 

 

In the heating degree day model sample hypotheses 21, 31, 39, and 40 appear to have the 

fewest number of rejections of the null. See 22, 25, 27, 28, 30 in particular 22 and 30. The first 

imposes the restrictions that there are no individual March and December level effects for 

HDD and the January and February level HDD effects are likewise the same. The second 

restricts the individual HDD squared effects for December, March, January, and February to be 

the same; there were no restriction on the HDD level effects. Model 39 imposes symmetry for 

level and squared HDD effects for December and March and January and February. The last 

model restricts the HDD coefficients in levels and in squares to be the same for all months.  
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We calculated the Akaike Information Criterion and the Schwarz Criterion for all models as 

well. Models 21, 31, and 39 also were among the models with lowest Criterion scores. (These 

tables are available upon request.) Model 40 had the lowest (mean and median) SIC value for 

each hour. This reduces the estimated parameters from 23 to 17. We decided to continue with 

models 39 and 40. The former allows for asymmetric effects in HDD responses at the 

beginning and end of the winter season as compared with the middle. The latter says that the 

HDD sensitivities are the same across all the winter months. The regression results for these 

two models are presented in Table 10. 

  

The cooling degree-day model sample empirical results reach similar conclusions. Again, we 

decided to keep continue with models 39 and 40. There are fewer significant restrictions in this 

sample than in the heating degree-day sample. Table 11 contains the regression results for the 

two models of summer electricity loads. 

 

Tables 12 and 13 respectively present results for testing the symmetry effects in the heating 

and cooling degree-day sensitivities. There are seven columns in each table. Hours of the day 

are identified in the first column. The rows contain the results for each hour.  Columns two 

through seven present three pairs of numbers for the tests.  The first tests is for the null 

hypothesis that the degree-day sensitivity in levels for the pair December and March (June and 

September) is the same as January and February (July and August). The second test is whether 

the degree-day sensitivity in quadratic terms is the same across the monthly pairs. The third 

test is for both hypotheses together. The first column in each pair is the Wald Chi-square 

statistic and the second column is the associated p-value. 

 

In general the heating degree-day sensitivities appear to depend on where in the winter season 

electricity consumers feel the cold. There is only one hour, 5pm, where the null hypotheses for 

similar effects are rejected; the December and March pair and the January and February pair 

both in levels and squared heating degree-day estimates are different. The rejections are at the 

2% and 3% level respectively and at 7% jointly. There are marginal rejections, between 5% 

and 10%, at 3am, 3pm, 8pm, and 10pm. Symmetry appears to be rejected jointly at 1am and 

1pm, but none of the individual symmetry tests is rejected at less than 20%. (This appears to be 
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due to lack of significance of  coefficients in one pair and not the other. The results are seen in 

the elasticity estimates below.) We can conclude that except for 5pm the winter season models 

are best specified without separate effects between the December and March pair and the 

January and February pair with respect to heating degree-day responses. 

  

The summer season model(s) tests for symmetry in Table 13 tell a different story. Across the 

three tests, for level terms, quadratic terms, and both jointly, we find six rejections at the 5% 

level and two at the 10% level. In three cases the three tests are rejected at 5%:  9pm, 10pm, 

and 11pm. The joint test at 10pm is significant at 10% not 5%. At 6pm the individual 

rejections are less than 5% while the joint is only marginal at 5.5 %. In the morning between 

9am and 10am and at noon the joint hypothesis is rejected, but cooling degree sensitivity 

appears to be driven more by the level effects and not the quadratic terms. We can refer back to 

the Figure 5 showing the load curve and average cooling degree-day variables. The morning 

effect is probably explained by the fact that loads have not reached their peaks so that level 

effects are most important. The persistence of high electricity consumption and cooling 

demand into the evening helps to bring in the quadratic terms into effect. The degree-day 

elasticities will need to take these factors into account. This can be interpreted as a possible 

start and end of season effect. 

 

 

V. Elasticity Estimates 

 

We compute elasticity estimates of the impact of a 1 degree Fahrenheit change in the heating 

and cooling degree-days on electricity loads for each hour. In general, elasticity estimates are 

not constant and change over the value of the variables of interest. Elasticities may be useful 

measures, because they are unit-free. Our hypothesis is that a fall in temperature in winter and 

rise in temperature in summer should have a net positive effect on electricity consumption. We 

expect the level effects to be positive and the quadratic effects can be positive or negative The 

scale-free measure will allow us to compare our elasticity estimates across utilities and regions.    

 

The hourly cooling degree-day elasticity in month j is defined as 
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ΕChj  =  ( αhj  +  γhj  * 2 * MCDDhj  ) * MCDDhj . 

 

Heating degree-day elasticities are calculated using the same formula replacing the average 

CDD measure for that hour and month by the average heating degree-day measure. (The M in 

front of MCDD terms means that they are evaluated at their mean values.)   

 

 

Table 14 shows the heating degree-day load elasticities for each hour across the symmetric and 

asymmetric model. If a coefficient estimate is not significant at 5%, then a zero is placed in 

that cell. The symmetric model for heating degree-days appeared most appropriate from the 

hypothesis test results in Table 12 with the possible exception of 5pm.  The last column or sum 

reflects the impact from both level and squared effects in heating degree-days.   

 

There were coefficient estimates significant at 5% in 21 of the 24 hours and sums were all 

positive. The level effect elasticity was significant between midnight and 7am and between 

4pm and midnight (except between 7pm and 8pm); these are the coldest times of the day. In 

addition there was a positive level effect between 9am and 10am and a small negative between 

noon and 1pm. The later was outweighed by the quadratic effect. Quadratic effects were 

positive and significant between 8am and noon, 2pm and 3pm, and from 6pm to 8pm as well. 

The highest elasticities were in the early morning hours and between 6pm and 8pm. The 

former affect temperature effects while the latter captures household temperature and activity 

effects. For example between 6pm and 7pm the combined level and quadratic effect is 4.8% 

for a 1degree Fahrenheit increase in heating degree-day temperature. 

 

The cooling degree-day elasticities in Table 15 have different characteristics from those of the 

winter season. In this case the asymmetric model results appeared to be the most appropriate. 

The responsiveness of June and September cooling degree-day coefficients was found to be 

different from the July and August coefficients. On net, all the hourly elasticities are positive. 

We found that level elasticity was statistically significant at 5% in 21 of 24 hours for the June 

and September pair and 18 of the 24 hours for the July and August pair.  The portion of the 
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elasticity associated with the quadratic term was negative and significant in 14 of the June and 

September measures and 13 of the July and August pair. An important point to take from this is 

that ignoring the quadratic term in the model specification would bias the elasticity estimates 

upward. We have two possible explanations (there maybe more) for the negative value. First, 

there is a limit on the cooling demand from the existing capital stock. Second, the utilities find 

ways to reduce the load response during very warm weather. The highest elasticities occur 

during the warmest portion of the day from 8am to 6pm. A surprising result is that the 

elasticity estimates appear at least numerically larger in most hours for June and September, as 

compared to July and August.  

 

This may be due to the two reasons mentioned above and greater volatility in temperature. The 

average cooling degree value for June and September between 9am and 6pm ranges from 4 to 

7.7 with a standard deviation from 5 to 6.9. The July and August values have about the same 

standard deviation range, 5.5 to 6.9 while the average cooling degree-day ranges from 7.8 to 

12.15. In addition, the July and August values appear to approximate a normal distribution, the 

Jarque-Bera test cannot be rejected at 10%. The test is rejected for every hour in the June and 

September sample. There appear to be flatter tails to the distributions; that is more observations 

close to zero and maximum average values close to those in July and August. Thus, even 

though hourly loads are on average larger in July and August, they appear to be relatively more 

temperature sensitive in June and September. We illustrate several of these concepts in figures 

below. 

 

The hourly elasticity estimates with electricity loads are presented in Figures 6 and 7 using a 

bar and line graph. The estimates are taken from the last column of Table 14 and represent the 

sum in the symmetric case for December, January, February, and March. The elasticities seem 

to coincide more with heating (and cooling) needs by households and businesses and not the 

level of the load per se. The winter load exhibits two peaks during the day, between 8:00-9:00 

and 20:00-21:00, and two troughs, about 3:00 and 14:00. Figure 6 shows the (statistically 

significant) hourly heating degree-day elasticities with bars on the left axis and the loads with a 

line on the right hand axis. Heating degree-day sensitivities are consistently 2% or higher 

between midnight and 6am. There appears to be no temperature sensitivity between 6:00 and 
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8:00. The next two hours have a heating degree elasticity of 3%, which seems to coincide with 

the start of the business day. Then, elasticities settle down until about 17:00 when they start 

rising as people are arriving home and the temperatures drop at sunset. The heating degree-day 

sensitivity seems to move with the load curve in the evening.  

 

Cooling degree-day elasticities are smaller than heating degree-day ones even though the load 

is higher. The elasticities are taken from the last column of Table 15 and represent the sum in 

the symmetric case for June, July, August, and September. During the night, between 22:00 

and 5:00, the elasticity is significant and about 0.5%-1.0%. This probably reflects the demand 

for comfort while sleeping even though this is the trough load period. Air conditioning demand 

is responsive on very hot nights.  In the morning as temperatures and loads rise people go to 

work, and businesses open from hour 8 through hour 11, the elasticity averages about 1.5%. 

The load sensitivity is marginal for the next three hours as the temperature is just peaking and 

loads are approaching their peak.  Starting at hour 15 through hour 18, the elasticity is greater 

than 1%. Between 6pm and 9pm the elasticity appears to be zero. This would seem counter-

intuitive, but can probably be explained by offsetting effects. Residential demand for electricity 

is increasing while businesses are closing. In addition, the level of the temperature may by 

high; it is falling rather than rising.   

 

VI. Simulation 

 

We conducted two simulations for the impact of higher summer temperatures using the 

forecasts from the Intergovernmental Panel on Climate Change (citation). The expectation is 

that temperatures could increase by 2 degrees Fahrenheit. The simulations look at two three 

day periods during July and August 2000 when cooling degree day needs were particularly 

high. The first was July 31st to August 2nd and the second was August 7th through August 9th. 

The hourly models are fit up through the day before each event and then forecasts are made for 

the next three days adjusting the cooling degree-day variables for a 2 degrees Fahrenheit 

increase. We compare the actual historical value against the forecast using the actual 

temperature values and the simulated forecasts with the adjusted cooling degree day variables. 
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The most important comparison we consider is the relative difference between the simulated 

forecast using the adjusted cooling degree values and the forecast using the actual cooling 

degree-day data. We examine the ratio for the two events in Figures 11 and 12. The figures 

show the ratio on an hourly basis each day during the two event periods respectively. The 

simulations do not show a very large impact on predicted loads; the effect is about 0.4% higher 

during the July 31st  – August 2nd event and 0.55% higher in the August 7th- August 9th event. 

There is no impact from midnight to 6am or from the peak at 3pm to 7pm (15:00-19:00). The 

largest impacts are in the late morning and at sundown: 7pm to 9pm. These are the periods 

when there is the greatest change in electricity loads.  

 

VII. Summary 

 

This first interim report describes the progress on modeling the impact of climate change on 

electricity consumption behavior. The major accomplishment is the construction of an hourly 

data base of electricity loads for the Pennsylvania-New Jersey-Maryland Interconnection 

(PJM) in the aggregate and by utility control region. A standard set of hourly forecasting 

models has been estimated for the whole PJM accounting for autoregressive components, 

heating and cooling degree temperature effects, trading day variation for holidays and 

weekends. Short-run elasticities have been calculated for the heating degree day and cooling 

degree day effects. The forecasting power of the model has been evaluated and the (absolute) 

percentage errors range from one-half a percent to two percent of hourly loads. A simple 

simulation over two three-day events of particularly hot temperatures during July and August 

2000 was performed. The experiment looks at the impact of a 2F increase in the daily 

temperature. We find a small but positive impact during the periods before and just after the 

peak in the daily electricity load.  

 

There are several research areas we intend to work on testing and improving the models. The 

first area involves the collection of hourly temperature data for PJM and the utility control 

areas. At present we only have daily high and low temperatures. These two measures may not 

provide adequate resolution of the impact of temperature variability and its impact on 

electricity loads. Second, the specification of the model can be modified to try and capture 
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more of the seasonal and temperature dynamics. The current set of hourly models covers PJM 

as a whole; the goal is to develop hourly models for each of the control regions. So far we have 

not been able to obtain loads by sector (residential, commercial, industrial, and other). This is 

another area for data collection and modeling we expect to report on in the future. The 

literature and our own experience suggests that the residential and commercial sector are more 

sensitive to climate variation than the industrial and other sectors. 

 

 

The accomplishments for the short run transportation analysis are … 
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