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Context

The modeling efforts of the STAR grant are
1. Electricity load modeling and forecasting
2. Electricity generation and dispatch 

modeling
3. Regional air pollution modeling
4. Health effects characterization
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ANN Model Architecture

Elements of a neuron
• Multiplicative Weight (w)
• Additive Bias (b)
• Transfer Function ( f )
The Neuron uses these elements in its operation, 

when it receives an input (p) and produces a 
result (a)
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ANN Model Architecture

Once a neuron receives an input (p), the 
neuron’s operation consists of  two parts:

• Linear Transformation 
using the weight (w) and bias (b)

• Application of the Transfer Function ( f )

The neuron then passes the result (a) on to the 
next part of the ANN.
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ANN Model Architecture

Linear Transformation
• Multiply the input (p) by a weight (w) and 

add the bias (b) to get the intermediate 
result (n): 

n = w x p + b
• Pass the intermediate result (n) to the 

transfer function
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ANN Model Architecture
Transfer Function
• Apply the transfer function ( f ) to the intermediate 

result (n) to create the neuron’s result (a)
• For neurons in the input layer, the transfer 

function is typically a hard-limiting switch at 
some threshold, say n = 0:

f(n) = (0 for n ≤ 0; 1 for n > 0)
• For neurons in the output layer, the “pure linear”

transfer function typically has no effect:
f(n) = n
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Example: A Neuron’s Operation
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hard-limiting transfer function with a threshold of n = 0:
w = 10; b = 100
f(n) = (0 for n ≤ 0; 1 for n > 0) 
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ANN Model Architecture
Example: A Neuron’s Operation
• Say a neuron has a weight of 10, a bias of 100, and a 

hard-limiting transfer function with a threshold of n = 0:
w = 10; b = 100
f(n) = (0 for n ≤ 0; 1 for n > 0) 

• Say the neuron receives an input of 5:
p = 5

• The neuron’s linear transformation produces an 
intermediate result of 150:

n = 10 x 5 + 100 = 150
• The neuron’s transfer function produces the neuron’s 

result of 1:
a = f(n) = 1
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ANN Model Selection

• The weights and biases are determined by 
the ANN during training

• Training involves presenting the ANN with 
input-output examples

• Training is finding the weights and biases 
that minimize the performance function

• The performance function is typically some 
measure of model error, such as MSE
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ANN Model Selection
The researcher specifies

the number of layers
• Input
• Output
• Hidden (if any)

the number of neurons in each layer
• input layer: typically 1-5 neurons
• output layer: typically 1 neuron

the type of transfer function for each neuron
• input layer: typically hard-limiting (0-1 switch)
• output layer: typically pure-linear (no effect)

the performance function for the network (MSE)
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III. Basics of Electricity Demand  
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Electricity Demand

• Utilities are interested in forecasting peak 
demand

• Peak demand determines how many 
generators the utility must bring on line 

• Overestimating demand is costly, wasteful 
• Underestimating peak leads to electricity 

shortfalls
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Electricity Demand

Hourly peak electricity demand depends on
• Weather
• Time of the Year
• Day of the Week
• Holidays
• Year
• Recent Electricity Demand 
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Independent Variable (Peak Electric Demand in MWh):
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Independent Variable (Peak Electric Demand in MWh):

h = 1…24 
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is the date of the observation

h
dLoad
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General Model

Dependent Variables
1. Weather (Temperature in Fahrenheit degrees): 

h = 1…24 
is the hour being modeled 

d = January 1, 1995 … September 30, 2003
is the date of the observation

h
dTemp
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General Model

Dependent Variables
2. Time of the Year: 

i = 1…12 
is the month of the observation 

(Month1 = 1 for January, 0 otherwise, 
Month2 = 1 for February, 0 otherwise, etc.)

iMonth
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General Model

Dependent Variables
3. Day of the Week: 

Dayj

j = 1…7 
is the weekday of the observation 

(Day1 = 1 for Monday, 0 otherwise, 
Day2 = 1 for Tuesday, 0 otherwise, etc.)
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General Model

Dependent Variables
4. Holidays: 

Holiday
dummy for recording days with different 
demand profiles due to businesses closing

(Holiday = 1 for New Years Day, Independence 
Day etc., and 0 otherwise)
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General Model

Dependent Variables
5. Year of observation: 

Year
records the year of the observation to 
account for trends
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General Model

Dependent Variables
6. Recent Electricity Demand: 

electricity demand for the previous three hours

1 2 3, ,h h h
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General Model

Dependent Variables
5. Recent Electricity Demand: 

electricity demand for the previous three hours

electricity demand for the previous day at this hour

1 2 3, ,h h h
d d dLoad Load Load− − −

1
h
dLoad −
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General Model
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Data

• Electricity demand data were obtained from 
PJM, a large Independent System Operator 
(ISO) in the mid-Atlantic U.S.

• Temperature data were obtained from the 
US National Climatic Data Center (NCDC) 
for the dates and areas of interest
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Model Selection

I chose to build an ANN with two layers
• Input Layer with 1-20 hard-limiting neurons
• Output Layer with 1 pure-linear neuron

I trained the ANN using the MSE as the 
performance function
The optimal number of input neurons was to 
be determined by evaluating their effect on 
the ANN
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Model Selection

• Adding neurons allows a model to be more 
flexible

• But each additional neuron requires estimating 
several more parameters (weight and bias vectors)

• McMenamin and Monforte (1998) suggest 
observing the Schwartz Information Criterion 
(SIC) as additional neurons are added to an ANN
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Model Selection

• The SIC is a measure of model performance, based on the 
MSE, penalized for degrees of freedom. 
(NB the statistic reported is often the natural log of the SIC)

2
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e is the base of the natural logarithm
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Model Selection

• The SIC is a measure of model performance, based on the 
MSE, penalized for degrees of freedom. 
(NB the statistic reported is often the natural log of the SIC)

• If a neuron’s benefit outweighs its cost, SIC falls
• When the SIC starts to rise, the optimal number of neurons 

has likely been surpassed
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Model Selection
SIC as a Function of Neurons in the Input Layer

Hour 13 – Hour 18
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Model Selection
SIC as a Function of Neurons in the Input Layer

Average over all 24 Hours
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CC1Model Results

For hourly models estimated for the 
Summer months:
• four models use 1 input neurons
• fifteen models use 2 input neurons
• four models use 3 input neurons
• one model uses 4 input neurons
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CC1 Crow, 5/25/2005
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Model Results

ANN models typically perform well with 
abundant data from non-linear relationships.  
The hourly models account for about 99% of 
the variation in the test data, with MAPE 
around 1.2%.  
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Model Results

• The models appear to be biased towards low 
values in the test period

• As the test period is composed of the most 
recent data, this bias may be due to a 
growth trend (data were not de-trended) 

• Bias could also be due to high demand in 
the test period, or a structural shift

“ANN Electricity Modeling.” Crowley, GWU.
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Model Results
Poor Performer – Hour 14
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