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Introduction to Structural Optimization 

Structural optimization is a systematic approach based on mathematics for identifying 
the best solution to a structural design problem.	



In mathematics, ‘best’ is defined as a minimum (or maximum) of a function f(x) 
occurring where the derivative is zero (df/dx = 0)	



But what makes a structural design the ‘best’? 	


	

Quantitative: the lightest, the safest, and/or the most economical? Others?	


	

Qualitative: the most visually striking, greatest emotional appeal, and/or best flow 

	

          of space and light? Others?	



It is impossible to rigorously define the ‘best’ structural design by a mathematical 
function f(x).	



Structural optimization can thus be used as a design tool in the following manners…	
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A.  Sizing Optimization	


	

Given a conceptual design and framing plan, identify the optimal sizes of 
components in that framing plan.  For example, minimize weight of a structure 
while satisfying stress and displacement constraints.  	



	

Optimized designs here are ‘optimal’ for the given conceptual design, which 
has presumably considered the qualitative objectives.  However, the true 
optimality is limited by the appropriateness of the conceptual design.	


	

Example: Central Chinese Television Tower	



Conceptual Design	



Uniform diagrid	

 Stress distribution	

 Optimized diagrid to yield 	


uniform stress distribution	



The diagrid pattern is optimized but is the cantilever form structurally optimal? 	
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Sizing optimization is the most common form of structural optimization  
Determine optimal member sizes for a given connectivity	



Benefits:  Easiest form of structural optimization	


	

 	

  Good and practical for optimizing a given design	


	

 	

  Many commercial programs do this (ETABS, etc.)         	



Drawbacks: Requires and is limited to 	


	

 	

         given design (connectivity)	
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B. 	

Shape Optimization	


	

Given a body of fixed volume, identify the optimal shape of the boundary of that body 
- design the ‘skin’. For example, design the wing of an airplane. 	



Optimizing folds in cold-formed steel cross-section	


(from Liu, Igusa, & Schafer 2004)	



Shape	


Optimization	



(from Bendsøe & Sigmund 2003)	



	

Benefits:  	

Good for materials that are easily folded	


	

 	

 	

Good for shaping the “skin” of structures 	


	

 	

 	

Some commercial programs do this (Abaqus, etc.)         	

	



	

Drawbacks:  Restricted to the given body	


	

 	

 	

Can’t introduce structural features (holes, bracing) into domain	



Minimizing drag on a body in a flow field 
(from Challis & Guest 2010)	
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Shape Optimization:  applied to concrete shells 

Courtesy of 	


Prof., Dr. Eng., Mutsuro Sasaki	



Hosei University, Japan	



Given shell with designed opening, 	


optimize shell height to minimize strain energy.	



Design iterations:	
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C. 	

Topology Optimization	


	

Given a design space, identify the optimal distribution of material within that 
space.  In other words, find the optimal connectivity, size, & shape of features.	



	

The algorithm is thus given a blank canvas and a material ‘dropper’ to place 
material at any point in space within that canvas. 	



	

Topology optimization is closest to ‘conceptual design’ and can be used to 
generate ideas for structural form.  Qualitative objectives can be incorporated 
through designer interaction and tweaking optimized solutions.	



	

 	

	



Topology	


Optimization	



Ω	

Design Domain	

Benefits:  Most general approach	


	

 	

  Good for solution of new problems	


	

 	

  Good for finding the true optimal 	


	

 	

      solution (not limited to given 	


	

 	

      connectivity, etc.)	


	

 	

	



Drawbacks:  Most difficult to solve	


	

 	

       Very few programs available	
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Introduction to Topology Optimization 

The topology optimization design problem	



	

Given the design domain Ω, loads, and boundary conditions, find the optimal 
layout of material subject to design constraints (e.g., limited volume V, 
allowable deflection, etc.)	



Design problem: maximize stiffness of a 
reduced weight beam (50% void ratio)	



Conventional low-weight design 
(from Bendsøe and Sigmund 2003)	



Topology optimized design is 40% stiffer 	


for same weight (from Guest et al. 2004)	



Ω	
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Introduction to Topology Optimization 

Origins of topology optimization	


	

The Limits of Economy of Material in Frame-structures (Michell 1904)	



	

Material distribution method (Bendsøe & Kikuchi 1988)	


Discretize the continuum design domain and determine whether each element contains 
material (a solid) or does not contain material (a void).  Define a element volume 
fraction ρe such that:	



Discretize the design domain Ω	


Connectivity of solid elements	


 defines the structural geometry	



€ 

ρ e(x) =  
1 if  x ∈ solid element
0 if  x ∈ void element
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
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We can maximize stiffness for given volume of material 
V by minimizing the external work done by the applied 
loads (force*displacement).  Or equivalently 
minimizing the strain energy in the structure.  	



This is called the minimum compliance problem. 	



Example: Maximum Stiffness Design	



€ 

min
ρ e,d

     f Td

subject to    K(ρe ) d =  f
                   ρe ve

e∈Ω
∑ ≤V

                    ρe (x) =  
1 if  x ∈ solid element
ρmin
e if  x ∈ void element

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

€ 

where         f =  applied nodal forces
                  d =  nodal displacements
                  K(ρe ) =  A

e
 ke (ρe )

                  ke =  ρe k0
e  

                  ve =  volume of element e
                  V =  volume of material available
                  ρmin

e  =  small positive number

Optimization formulation in finite element notation:	

 cantilever beam problem	



Design domain	



(compliance)	



(equilibrium condition)	



(volume constraint)	



(design variable constraints)	



applied loads	



structural 	


stiffness 	


matrix	



displacements	
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1.  Large design space	


•  Proof-of-concept: ~ 10,000-65,000 design variables	


•  Real design: > 100,000 design variables	



3.  Discrete (makes derivatives hard to come by)	


•  Design variables are binary (or integer)	


•  Constraints may be discrete 	

	



4.  Nonlinear - simplest are bilinear in design and state variables	



5.  Continuous relaxed versions are nonconvex, meaning lots of peaks and 
valleys, making it impossible to find the absolute best solution.	



6.  Structural stiffness problems are ill-posed, leading to numerical instabilities

Challenges in Topology Optimization 

We solve this problem using optimization algorithms.  However, these problems 
are extremely difficult to solve!	



Details will not be presented but be aware that we can sometimes get stuck!	


(see Bendsøe and Sigmund 2003 for a review of these issues)	
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Design Progression 

Cantilever Beam Example  
Desired volume fraction = 50%  (V = 0.5 )VΩ ) 

Stage I	

 Stage II	



Stage III	

Stage V	

 € 

⇒

€ 

⇓

€ 

⇐



7	



JHU Civil Engineering!
13	



dmin = 4.0, C = 1.80α 	



dmin = 2.0, C = 1.76α 	



dmin = 1.5, C = 1.73α 	



dmin = 1.0, C = 1.70α 	


α = P2/E 

We can also control the minimum feature size (length scale) 

There is an option in the program to input the minimum 
length scale (diameter dmin) of structural members. The 
smaller the length scale the more intricate and stiffer the 
design. However, smaller length scales require finer 
meshes, increasing computational run time.	
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The HPM Program for Topology Optimization	



We have provided a simple topology optimization demonstration program for 
minimum compliance (maximum stiffness) design.	



Note: to make this simple to use on a Windows PC, we have had to sacrifice 
significant speed… so run times will be longer than usual.  	



The program is based on the Heaviside Projection Method (HPM) for 
topology optimization (Guest et al. 2004) and uses SIMP (Bendsøe 1989) as 
the material interpolation model and the Method of Moving Asymptotes 
(MMA) as the optimization solver (Svanberg 1987).	



Note: This software is meant for educational purposes only. Users are asked to 
reference the following work if they publish results using this software:   
Guest JK, Prévost JH, Belytschko T. (2004). Achieving minimum length scale in topology optimization using 
nodal design variables and projection functions. International Journal for Numerical Methods in Engineering 

61(2): 238 - 254.  
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Running the executable…	



Note: If you have not previously installed Mathwork’s MCRInstaller you will need to 
do this before running the executable.  Open the MCRInstaller.exe file and follow the 
on-screen instructions – this is a one-time process that installs MATLAB compiled 
libraries on your computer. 	



1.  Open the executable HPMtopopt.exe  	


	

This should open the window at right.	



2.  The first step is to choose the problem 
 you would like to solve from the  
drop-down menu:  
•  Select 0 to enter a new problem 
•  Select 1-6 to solve a  pre-programmed  

 problem (shown on next page) 
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Running the executable…	



Pre-programmed design domains 1-6:	



1	


Problem Number	



2	

 3

4	

 5	

 6
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Running the executable…	



3.  Enter the desired finite element mesh 
discretization (number of finite elements 
to be used in the x- and y- directions).  
The program uses 4-node quadrilateral 
elements.  More elements means 
smoother boundaries but increased 
computational expense!	



4.  Enter the desired allowable volume 
fraction of material (e.g., 0.30 = 30% of 
domain may contain material).  This will 
be a design constraint. 

5.  Enter the desired minimum allowable 
structural member size (length scale).  
Enter ‘0’ to use the smallest possible for 
the given mesh discretization.  (see slide 
13, Guest et al. 2004 for examples) 
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Running the executable…	



6.  Enter whether a discrete solution is desired.	



No = functionally graded structures are 
desired (e.g., stage I of slide 12).	



Yes = 0-1 solution is desired (e.g., slide 13).	


Yes with Continuation Method = 0-1 

solution desired and structural 
performance is preferred over 
computational expense.  The exponent 
will be slowly increased (as in slide 12) 
to avoid local minima.	



7.  If solving a pre-programmed problem,  
 select ‘Calculate’ to run the program. 
 Else, continue… 
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Running the executable…	



8.  Entering a new design problem requires 
specifying the applied loads and supports 
boundary conditions.  This can be done 
using either:	


•  A datafile (see enclosed example).  

Enter name of datafile here.  	


	

The datafile must be in the same 
directory as the executable.	



OR	


•  Interactive Menus.	



	

Choosing this option will open a 
new window where loads and 
support locations may be entered. 	
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Running the executable…	



Add a load	


	

Enter/Select the node 
number and the load 
magnitude in the x- and 
y-directions	



Add a support	


	

Enter/Select the node 
number and the degrees 
of freedom that are 
restrained (x- and/or y-
displacements).	



Current loads 	


and supports	



Preview the 	


design problem	



Once completed, choose 
‘Close’ and then ‘Calculate’	



Nodes are numbered from left 
to right, bottom to top.  So 
the bottom left node is 
number 1 and the top right 
node is (nex+1) * (ney+1).	



Interactive Option	





11	



JHU Civil Engineering!
21	



Running the executable…	



Note:  You must enter support boundary conditions that will yield a kinematically 
stable structure. If your support boundary conditions are not appropriate, you may 
see the following error:	



	

 	

 	

Warning: Divide by zero.	



The optimization iteration 	


history and design progression	


will be displayed.  	



A final solution for problem 3 is 	


shown here:	



Optimized topology - color bar shows	


coloring for magnitude of element volume	



fraction (0=void, 1=solid, in between is a mixture of the two)	
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Please send comments, questions and bugs to:  topopt@jhu.edu	
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