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SUMMARY

A methodology for imposing a minimum length scale on structural members in discretized topology
optimization problems is described. Nodal variables are implemented as the design variables and
are projected onto element space to determine the element volume fractions that traditionally define
topology. The projection is made via mesh independent functions that are based upon the minimum
length scale. A simple linear projection scheme and a non-linear scheme using a regularized Heaviside
step function to achieve nearly 0-1 solutions are examined. The new approach is demonstrated on
the minimum compliance problem and the popular SIMP method is used to penalize the stiffness of
intermediate volume fraction elements. Solutions are shown to meet user-defined length scale criterion
without additional constraints, penalty functions or sensitivity filters. No instances of mesh dependence
or checkerboard patterns have been observed. Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper offers a new approach to imposing a minimum length scale on structural members
in discretized topology optimization problems. Nodal volume fractions are introduced as the
new design variable and are projected onto element centroids to determine the traditional
element-wise volume fractions p®, or relative densities, that define topology.

The goal of topology optimization is to determine the layout of material of specified volume
V in a domain Q that maximizes the objective function for a given set of loads and boundary
conditions. It is well-known that the continuum form of these problems is ill-posed, and thus
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ACHIEVING MINIMUM LENGTH SCALE IN TOPOLOGY OPTIMIZATION 239

generally lacks solutions. For the maximum stiffness problem, solutions can be improved by
introducing more holes into the topology while keeping the total volume of material constant.
This can lead to ‘chattering’ designs where the number of microscopic holes becomes unbounded
[1]. The non-existence of solutions is reflected in the discretized version in the form of numerical
instabilities. Although the discretized problem has solutions due to the finite number of elements,
the solutions are influenced by the density of the mesh. As the mesh is refined, smaller holes can
be introduced into the topology and members can become thinner. Another common problem
is the occurrence of checkerboard patterns, or regions of alternating solid and void elements,
in the final solution. Diaz and Sigmund [2] and Jog and Haber [3] showed that checkerboards
are not optimal but rather result from numerical instabilities.

A significant amount of literature exists on preventing checkerboards patterns and mesh
dependence. Checkerboards can be removed through smoothing or inhibited by using higher
order finite elements [2, 3], non-conforming finite elements [4], or additional constraints [5].
A popular approach to eliminating mesh dependence is to restrict the design space so that a
solution exists for the original continuum problem. One such restriction proposed by Ambrosio
and Buttazzo [6] and first numerically implemented by Haber et al. [1] places a constraint on
the total perimeter of the structure. Although it has been shown to yield mesh independent
solutions, this global constraint does not prevent local thinning.

The design space can also be restricted by imposing a minimum length scale on members
in the final topology. This yields mesh independent and checkerboard-free topologies as local
features smaller than the physical length scale are prohibited. Petersson and Sigmund [7]
used a local gradient constraint (or slope constraint) that limits the variation in p® between
adjacent elements. They reported similar results to those produced by Sigmund’s heuristic
filter which replaces the sensitivity of each element with a weighted average of neighbouring
element sensitivities [8, 9]. These approaches produce mesh independent and checkerboard-free
solutions, but also yield grey regions, i.e. regions containing intermediate volume fractions,
along the boundary of the structure. The transition from solid to void (1 to 0) then occurs over
several elements and some of these elements must be considered as solid for the minimum
member size constraint to be satisfied. For a more detailed review of these procedures, the
reader is referred to Reference [10]. More recently, Poulsen [11] suggested a constraint on
the minimum length scale where violations are detected by passing a ‘looking glass’ over the
design domain.

The approach introduced in this paper addresses the minimum length scale from a different
perspective: the perspective of the nodes. We propose that nodal volume fractions be used as
the design variable instead of element volume fractions. These nodal values are then projected
onto the element centroids to determine the familiar element-wise volume fractions p® that
are used to determine the topology and consequently the stiffness and volume of material.
Therefore, element volume fractions become a function of the nodal volume fractions.

This simple change coupled with an appropriate projection function appears to yield mesh
independent and checkerboard-free solutions that meet the minimum member size criterion.
These benefits are realized without additional constraints, penalty functions or filters.

Using nodal values as a design variable in topology optimization is not a new idea. Belytschko
et al. [12] reported success using implicit functions to define the topology. The magnitude of
the implicit function is determined at the nodes and then approximated elsewhere in the domain
via shape functions. To solve the optimization problem, a regularized Heaviside step function
and the extended finite element method are implemented. The approach presented here differs in
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that it focuses on and provides direct control over length scale. It also uses the more traditional
element-wise volume fraction variable p° to define the topology.

The layout of the paper is as follows. Section 2 describes the projection scheme and intro-
duces a linear projection function. The well-known minimum compliance problem is presented
in Section 3 and is solved using the new approach in Section 4. Section 5 presents results for
an example problem. A non-linear projection function is introduced and applied to example
problems in Section 6 and conclusions are given in Section 7.

2. NODAL DESIGN VARIABLES AND THE PROJECTION SCHEME

Nodal volume fractions are the design variable in this method but do not carry much physical
meaning on their own. They must be converted into element volume fractions before the
topology, stiffness and volume of material can be determined. This conversion takes place
through a projection scheme.

Many functions are available to project nodal values onto an element space—for example,
the standard C° shape functions used in the finite element method. These shape functions,
however, are by definition mesh dependent. Each node’s shape function influences only the
elements connected to that node. As the mesh is refined, the region of the domain it influences
becomes smaller.

We require projection functions that are not influenced by mesh size. Instead, they should
be based on a physical length scale that does not change with mesh refinement. The projection
functions given here are constructed so that this parameter is equivalent to the minimum
allowable radius ryj, of members in the final topology. For this reason, the scale parameter is
hereinafter referred to as rpin-

Projecting nodal values onto an element requires two pieces of information: (i) the set of
nodes included in the projection and (ii) the relationship between those nodes and the element
volume fraction. The first issue is governed by the parameter ryj,. The second issue is more
open—this paper offers two possibilities.

2.1. Identifying the nodes

The primary role of the scale parameter rpj, in the projection scheme is to identify the nodes
that influence the volume fraction of element e. Nodes are included in the element’s projection
function if they are located within a distance rpj, of the centroid of e. This can be visualized by
drawing a circle of radius rpi, centred at the centroid of element e, thus generating the circular
sub-domain QY shown in Figure 1(a). Nodes located inside €, contribute to the computation
of p®. It is worth repeating that r;, is a physical length scale, independent of the mesh. As the
mesh is refined, rmin and consequently Q; do not change, as Figure 1(b) illustrates. The only
difference between the two meshes is the number of nodes located inside €, and, therefore,
included in the projection function. This is essential to generating mesh-independent solutions.

The search routine to identify the nodes lying inside each elemental Qf is expensive,
particularly for fine meshes or large values of ryi,. However, it is performed only once at the
beginning of the algorithm.
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Figure 1. Nodes located inside the domain Qf are used in the projection scheme for element e—Q
does not change as mesh (a) is refined to (b).

2.2. A linear projection function

With the nodes identified, the second issue regarding the structure of the projection function
can be addressed. This paper proposes two possible functions that ensure solutions meet the
minimum length scale criterion. Let us first introduce the simpler linear projection function. A
non-linear function that produces nearly 0—1 solutions is discussed in Section 6.

The linear projection function determines element volume fractions by performing a weighted
average of the eligible nodal volume fractions. The weights assigned to the nodal volume
fractions are based on proximity and determined by placing a weight function w(x) at the
centroid of element e, X°. This weight function has a magnitude of 1 at the element centroid
and decreases linearly to O over a distance rpi, in all directions, essentially creating a cone of
unit height and base 2rpyj, as shown in Figure 2. To be more precise, the weight function of
element e has a compact support Qf given by

xeQ if r=|x—X| <rmn (1)

The linear weight function is defined by

Tmin 77 if x € QF
wx—X)={ ’min N ©)
0 otherwise

The weight function is independent of the mesh. If the mesh is refined, the only change will
be an increase in the number of locations at which the function is to be evaluated.
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Figure 2. The weight function w(x) for the linear projection scheme.

Let the element volume fraction of element e be denoted by p°®. We define an auxiliary set
of nodal variables p; that are related to the element volume fractions by
e _ Y jes, Pjwx; —X°)
2jes, W =X

where S, is the set of nodes in the domain of influence of element e (Q) and x; is the
position of node ;.

3)

3. PROBLEM DEFINITION

In order to demonstrate this new approach to structural optimization let us consider the standard
minimum compliance (maximum stiffness) problem. The object is to find the layout of material
(structure) of volume V in the domain Q that minimizes the compliance for a given set of
loads and boundary conditions. Ignoring body forces, compliance is defined as

C = / tTudll 4)

where t are the tractions applied to the boundary I'; and u are the displacements.

The domain Q is discretized into a finite number of elements. The goal is then to determine
whether each element is a solid (p° = 1) or void (p® = 0), where the void ratio p° is the
traditional design variable for topology optimization.

Due to the inherent difficulty of binary programming problems, the 0—1 constraint on p° is
relaxed so the problem becomes a material distribution problem [13, 14] similar to the variable
sheet thickness problem [15]. Although permitted, elements with intermediate volume fractions
(between 0 and 1) are undesirable and are thus penalized to limit their presence in the final
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solution. We use the popular solid isotropic material with penalization method (SIMP) developed
by Bendsoe [14, 16] for the penalization. SIMP sets element stiffness tensors proportional to
(p®)P, where generally p >3, thereby decreasing the stiffness of elements with intermediate p°,
making them uneconomical; also see References [17—19]. Alternatively, a penalty term such as
> . p°(1 — p®) could be added to the objection function [20].

The optimization problem, with element volume fractions expressed as a function of the
nodal volume fractions py, is stated as

min fTa
Pn,u

st. K(ppu=f~f

5
Z PS(pn)v’ <V ©)
ecQ
p;“ingpngl VneQ
where
K(pn) = A k*(pn)
(6)

k¢ (pn) = (p°(Pn)) kG

and f are the applied loads, K(py) is the global stiffness matrix formed by the usual assembly
(A) of the element stiffness matrices k¢, k{ is the element stiffness matrix of a solid element,
v¢ is the volume of element e, and p™" is the minimum allowable nodal volume fraction.
For the linear projection function, p™" = Peins Where pf . is the minimum allowable element
volume fraction set equal to a small positive number to ensure non-singularity of the global
stiffness matrix. For example, we have used pfmn =103,

The principle of minimum potential energy allows us to express the equilibrium constraint

in the objective function, yielding the well-known max-min formulation:

max min (%uTK(pn)u — fTu)
Pn u

s.t. 2 PSPV <V @)
eeQ)

p;“ingpngl Vn e Q

4. SOLUTION PROCEDURE
Problem (7) is solved using fixed point iterations. Displacements for the current iteration are
found by solving the inner optimization problem for the current set of element volume fractions,
which corresponds to solving the equilibrium equation:

K(pp)u =f )]
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These displacements are then held constant and the outer optimization problem is solved to
determine the new nodal volume fractions:

r%in —I1(pn)

st Y P <V ©)
ecQ

pzninépngl VneQ

where

LS (o) uTiue — T (10)

T(pn) = 7 .
ec

and u® is the displacement vector for element e, the strain energy term in (7) has been replaced
by the sum of elemental strain energies, and the maximization problem has been converted to
minimization form.

We solve (9) using the method of moving asymptotes (MMA) developed by Svanberg [21, 22].
MMA minimizes sequential convex approximations of the original function and is known to be
very efficient for structural optimization problems. Solving (9) requires the gradient of Il(pyp)
with respect to p,:

o 1 0p°

=5 3 p(epa))” ukgue S (11)
apn 2.0 apn

The term dp®/dp, will only be non-zero for elements whose domain € contains node n, i.e.

the elements that use node n in their projection function.
For the linear projection function used in this paper, 0p°®/0p,, is

o0p° _ w(x,; — X°)

- _ (12)
0py  2jes, WX —X°)

The convex sub-problem is then solved using an interior point method, a very efficient opti-
mization method for convex problems; see References [23,24] for details on implementing the
interior point method.

It is well-known that the non-convexity of the design problem often leads to locally optimal
solutions, especially when intermediate volume fractions are heavily penalized from the outset.
We therefore use the continuation method as described by Sigmund [7] to reduce the probability
of converging to a local minimum. The optimization problem is first solved with the exponent
p equal to 1. The exponent is then increased by 0.5 and the problem is solved again using
the previous solution as the starting topology. This pattern is continued until the exponent
reaches 5.

5. CANTILEVER BEAM EXAMPLE

The cantilever beam problem is shown in Figure 3 and treated here as dimensionless. The
design domain Q has a length L of 40, height H of 25 and unit width. The domain is fixed
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H=25
P
I L=m 1

Figure 3. Cantilever beam problem.

>

Figure 4. Design evolution during the continuation method: (a) p = 1.0; (b) p = 1.5; (¢) p = 2.0;
and (d) p =5.0. The black bars represent the length dpin, = 4.

() (d)

along the left edge and a point load P = —1 is applied midway up the free (right) end of
the beam. Young’s modulus is 106, Poisson’s ratio is 0.25, and the allowable volume V of
the structure is 50% of the domain volume, initially distributed uniformly. Minimum allowable
member diameter dpyin iS 4 (Fmin = 2). The problem was solved using 4-node quadrilateral
elements.

5.1. Design evolution

Figure 4 shows the converged topologies at various stages of the continuation method for an
80 x 50 element mesh (h = %, where h is the element size). As expected, the topology at
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(c) {d)

Figure 5. Optimal topology for different levels of mesh refinement when dnin, = 4: (a)
40x25 (d/h =4); (b) 80 x50 (d/h =8); (c) 160 x 100 (d/h = 16); and (d) 240 x 150 (d/h = 24).
The black bars represent the length dy;y.

p = 1 includes a significant number of elements with intermediate volume fractions. The outer
boundaries of the structure, however, are well-defined. As the exponent increases, the number
of elements with intermediate volume fractions decreases and the interior members develop.
The general topology for this example is achieved by stage p = 2, and later continuation steps
push more intermediate volume fraction elements to the bounds. The final solution (p = 5),
shown in Figure 4(d) is consistent with solutions produced by Sigmund’s sensitivity filter. Like
those solutions and solutions obtained by slope constraints, Figure 4(d) contains grey regions.
This shortcoming is discussed and corrected in Section 6.

The evolution of the topology is quite different from that reported by Belytschko et al. [12]
with implicit functions. That approach allows the interior and exterior boundaries of the structure
to form immediately as grey regions do not exist. The disadvantage is that the topology changes
significantly during the iterative minimization due to the flatness of the objective function near
the optimum.

5.2. Mesh independence

Figure 5 shows solutions for rpi, = 2 units using several mesh sizes. The figure demon-
strates that the solution does not depend on the discretization: the only difference between the
topologies is that the boundary of the structure becomes smoother with mesh refinement.
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Figure 6. Optimal topologies using linear projection for various minimum allowable member diameters:
(@) dmin = 2.0; and (b) dpin = 1.0, the black bars represent the length dpi,. Both cases use a
160 x 100 element mesh (d/h ratios of (a) 8 and (b) 4).

5.3. Changing minimum member size

The linear projection function provides direct control over member sizes through the scale
parameter rpin. The results in Figure 5 confirm this as all members have a thickness of at least
4 units. It should be noted, however, that some elements with intermediate volume fractions
are used to satisfy this requirement. Thinner members can be allowed in the final topology by
simply decreasing rpin. Figure 6 shows topologies for minimum allowable member diameters
of 2 and 1 unit. It is clear that decreasing rpyi, leads to finer structural members in the final
topology. The 200 x 100 element mesh (h = ‘—11) used for Figure 6 is very fine but required to
capture thinner structural members that are permitted when decreasing 7y, to 0.5. The smallest
allowable sub-domain QY would include only the nodes comprising element e, and therefore
h < ~/2rmin. However, we have found that Q¢ should include nodes located outside of element
e, therefore requiring & < (v/10/5)rmin for a regular mesh.

6. OBTAINING 0-1 SOLUTIONS

A disadvantage of the linear projection function is the unavoidable fading effect that occurs
along the edges of structural members. The transition from solid to void (1 to 0) occurs
over several elements leaving intermediate volume fractions in the final topology. This ap-
pears to be a fundamental characteristic of linear projection schemes and cannot be prevented
through penalization. This drawback is also observed in solutions obtained with slope-constraints
and Sigmund’s sensitivity filter. The boundary of the structure is usually interpreted as lying
somewhere inside the grey region or some post-processing is performed to develop a clearer
boundary.

6.1. Non-linear projection functions

The fading effect can be minimized or entirely prevented by a non-linear projection func-
tion. The Heaviside step function, for example, would insure a 0—1 boundary and maintain
a minimum length scale when using the same nodes as the linear projection. Let us denote
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Figure 7. The regularized Heaviside step function for various magnitudes of f: (a) f = 0 (linear);
(b) p=1; (c) f=5; and (d) f=25.

the weighted average of nodal volume fractions within Qf as u°(pn). The weighted average
function is repeated here for convenience:

o _ Djes, PjwXx; —X)
ZjESe w(X] _ie)

where w(x) is the weighting function defined by (2).
The element volume fractions are now expressed as a Heaviside step function by

(13)

1 ppn) >
Pt = . (14)
Pmin  if #5(pn) = p "
In other words, an element e is a void element if and only if all nodal volume fractions within
Q¢ equal p™n. On the other hand, a node with volume fraction greater than p™" yields a
weighted average u® greater than pnmi“ for all elements whose centroid lies within a distance
rmin Of that node. All of these elements are then solid elements, thereby satisfying the minimum
length scale criterion.
In order to use the optimization algorithm outlined in Section 4, the Heaviside function must
be regularized so that the gradient of p® with respect to p, is continuous. This can be achieved

by the exponential function:
pe=1—e PP 4 (py) (15)

where the parameter [ dictates the curvature of the regularization and (°(py) recovers the
bounds on the element volume fractions:

¢ = 1 (p)e? (16)

The projection function (15) is linear when ff = 0, and approaches the Heaviside step function
as f§ approaches infinity. Figure 7 displays the regularization for a sample of f§ values.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:238-254



ACHIEVING MINIMUM LENGTH SCALE IN TOPOLOGY OPTIMIZATION 249
The lower bound p,“{lirl must be adjusted for the selected f§ so that p° achieves the lower

bound (approximately) when Q¢ contains only nodes with minimum volume fractions—i.e. so
that the following relationship holds:

Pl =1 — e PO 4 pming—f (17)

The third term is close to zero for most values of f and py . . Thus, the following estimation

is often sufficient for p™i":

min

plin = —% In(l — plyiy) (18)

It should be noted that (13), like the linear projection function, uses the weighted average of
nodal values inside QF to compute u®(pp). Alternatively, a standard mean could be used to
determine the average nodal volume fraction. Although a standard mean may reduce the number
of intermediate p® in the final topology, preliminary results suggest the weighted average is
more stable and produces smoother topologies.

We use the same optimization algorithm described in Section 4. The first derivative 0p°/0p,,
given in (12) is replaced with

op° e pn) o B O
LA n £ 19
0Py (ﬁe e ) 0Py 4
where
ou’ w(X,; —X°)

= 20
On Tyey, 00— %) .

Problems are solved using the continuation method where the exponent penalty is raised gradu-
ally. We recommend starting with a low value of f3, for example f§ = 1, to reduce the probability
of oscillations and converging to a local minimum. If intermediate volume fractions exist in
the converged topology, § and/or the exponent can be increased and the problem solved again
until they are satisfactorily reduced.

6.2. Cantilever beam example

The cantilever beam problem is now solved using the non-linear projection function. For the
results contained in this section, initial f is 1.0, and p and f§ were raised as described above.

The evolution of the topology is similar to the previously discussed evolution for the linear
projection function. The converged solutions for the first continuation step (p = 1) are nearly
identical as intermediate volume fractions are not yet penalized. Figure 8 contains the solution
for dpin = 4 units. The topology is similar to those created by the linear projection function
but the number of intermediate volume fraction elements along the edges of structural members
is greatly reduced.

As with the linear projection function, the non-linear function provides direct control over
member sizes through ryi,. Figure 9 shows topologies for minimum allowable member di-
ameters of 4, 2, 1.5 and 1. As dpj, is reduced the problem becomes less restricted, thereby
allowing thinner structural members to develop in the final topology.
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Figure 8. Optimal topology using the non-linear projection function for dpi, = 4.0—the black bar
represents the length dpiy. Created using an 80 x 50 element mesh (d/h = 8).

(i1} b}

ic) (]

Figure 9. Optimal topologies using non-linear projection for various minimum allowable member
diameters (represented by the black bars): (a) dmin = 4.0; (b) dmin = 2.0; (¢) dmin = 1.5; and (d)
dmin = 1.0. All cases use a 160 x 100 element mesh (d/h = (a) 16; (b) 8; (c) 6; and (d) 4).

Comparing Figure 9 with the results obtained by the linear projection function (Figure
6) reveals that the reduction of intermediate volume fraction elements can lead to significant
topological changes. A property of the linear function is that fading will occur, even with heavy
penalization, and the minimum length scale is satisfied by the intermediate p° in these regions.
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H=20

L=60

Figure 10. MBB-beam problem.

This allows for the formation of primarily ‘grey members’ (see Figure 6(a)). The non-linear
function does not share this property as 0—1 solutions are obtainable. Under heavy penalization
of intermediate volume fractions, members strive to satisfy the length scale criterion with only
solid elements, thereby eliminating grey members from the final topology (see Figure 9(b)).
This fundamental difference means the linear function can overestimate the intricacy of the
topology if the end goal is a true 0—1 design.

Figure 9 also reveals that the non-linear projection yields fewer elements with intermediate
volume fractions as the minimum length scale to mesh size ratio (dpin/ %) decreases. This trend
is also seen in the next example. With a larger dpi, (or smaller .) the number of nodes located
inside of Qf increases, meaning the weight assigned to nodes with large p, is extremely small
for the elements at the edge of structural members. This leads to a lower nodal weighted
average for that element and consequently a higher probability of becoming an intermediate
volume fraction. Recall, however, that the mesh must be sufficiently refined as described in
Section 5.3 to use the projection functions appropriately.

6.3. MBB-beam example

The second example is the so-called MBB-beam problem [25] and is shown in Figure 10.
The problem is treated here as dimensionless and the deflection and stress constraints of [25]
are relaxed. The design domain Q has a length of 120 (L = 60), height H of 20 and unit
width. Vertical displacement is restricted at the bottom corners of the beam and a point load
P = —1 is applied at the midpoint on top of the beam. Due to symmetry only the right half
of the beam is analysed. Young’s modulus is 10°, Poisson’s ratio is 0.25, and V is 50% of the
design domain volume, initially distributed uniformly. The problem was solved using 4-node
quadrilateral elements.

Figure 11 displays the converged solutions for a minimum member diameter of 5 units when
the linear and non-linear projection functions are implemented. The topologies are similar, with
the non-linear function yielding almost no intermediate volume fraction elements in the final
solution. Figure 12 contains the final topologies for various minimum allowable length scales.
As rpin is reduced, the problem becomes less restricted and thinner members are permitted to
develop.

Although not observed here, one potential shortcoming of this approach is that one-node
hinges can exist in the final topology. Also referred to as point flexures, one-node hinges
describe the event where two solid members are connected at only one node [26,27]. This
is similar to the checkerboard problem but is isolated to two elements. Consider two nodes,
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(a) (b}

Figure 11. Optimal topologies for right half of beam produced by the: (a) linear; and (b)
non-linear projection functions for dyi, = 5.0—the black bars represent the length dpip.
Both cases use a 48 x 16 element mesh (d/h = 4).

ie)
Figure 12. Optimal topologies using non-linear projection for various minimum allowable
member diameters (represented by the black bars): (@) dpn = 6.0; (b) dmin = 4.0;
©) dpin = 20; (d dpin = 1.5 and (e) dmin = 1.0. All cases use a 240 x 80

element mesh (d/h = (a) 24; (b) 16; (c) 8; (d) 6; and (e) 4).

separated by a distance 2rpiy, that produce two circular solid members of radius rpi,. If all
p, between the nodes are minimum in magnitude, only the edges of the circular members
will touch, potentially leading to one node hinges. This will not occur for the linear projection
and has not been detected when the non-linear projection function features a weighted average
of nodal values. However, one node hinges have been observed in topologies when both a
standard mean and large f are used for the MBB beam problem.

7. CONCLUSIONS

The method presented in this paper offers direct control over the thickness of structural members
in topology optimization problems. This is achieved through the use of mesh independent
projection functions that convert nodal design variables into the familiar element-wise volume
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fractions p®. Despite this fundamental change, element volume fractions are still used to define
the topology and therefore the stiffness, allowing for the use of Bendsee’s popular SIMP
method to penalize intermediate volume fraction elements.

Preliminary results suggest that our methodology produces mesh independent, checkerboard-
free and minimum member size compliant topologies. The simpler linear projection function
appears to produce smooth solutions similar to those obtained by Sigmund’s sensitivity filter.
A byproduct of the linear function is the fading effect that, in some cases, is required to
conform to minimum length scale. This can lead to ‘grey members’ and an overestimation of
the intricacy of the topology as shown in the previous section. On the other hand, the non-
linear projection function seems to produce nearly 0—1 topologies that satisfy the length scale
criterion with solid elements. The minimum length scale is met without additional constraints,
penalty functions or sensitivity filters. It should be noted that the non-linear projection function,
in its present state, imposes a minimum length scale on only structural members, and does not
directly impose a length scale on voids.

The approach has some similarities to the method presented in Belytschko et al. [12] which
uses implicit functions to define the topology. Both methods use nodal values as the design
variable and project those values onto element space. The projection functions here, however,
ensure a minimum length scale as they are based on the physical length parameter ryi,. The
projection in Reference [12] is local to the element as CY finite element shape functions are
used. Advantages of the approach in Reference [12] are that 0—1 solutions are more readily
obtained and solutions tend to be smoother for coarse meshes as implicit functions are used
to define topology instead of element-wise volume fractions. A final similarity is that both
methods regularize the Heaviside function to achieve 0—1 solutions. The regularization given in
Equation (15) is just one possibility; other non-linear projection functions should be examined.

The methodology appears to be quite promising and is applicable to a wide-range of topology
optimization problems. The only change in traditional problem formulations would be that
element-wise volume fractions are expressed as a function of nodal volume fractions and these
nodal values become the design variable.
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