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The Salginatobel Bridge in Shiers, Switzerland is perhaps
most famous and influential of Robert Maillart's bridges.
bridge, high up in the Swiss Alps, crosses a deep ravine 1o
211 town, Shuders. The bridge is only about ten feet wide
was designed for pedest lans, animals, bicycles, and even

and trucks. It springs from one very steep mountainside

nearly shear one. The lightness and shallowness of its

make it a graceful crossing, as well as an efficient struc-
‘]!2i
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that was not exceptionally difficult nor costly to build.
The design is the synthesis and abstraction of elements

Maillart's earlier bridges. The bridge represents thirty-
years worth of refinenents to some very bold and beautiful
s about both aesthetics and engineering. As Maillart evalu-

the appearances and the structural responses of his earlier
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bridges, he could modify his later designs accordingly.A There
is not a single new element in the Salginatobel bridge design,
but the new form Maillart created through this synthesis is

jdeally suited to its purpose and place.

Geometry

The basgic structure of the Salginatobel Bridge is a three

hinged arch. The road deck and the connecting verticals trans-
fer the traffic and dead loads to the arch, which, in turn,
transfers the loads to the supports on the mountainsides. The
arch, however, is the stiff part of the structure, i.e., the

part that makes spanning the ravine possible.
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For analysis, the bridge must be simpli

and the verticels are neglected, ana only the supporting struc-
ture of the three-hinged arch is considered. This arch is
further idealized into a one-dimensional model that is a para-
bola since the centroid of the U-shaped box section is close

enough to a parabola to make the idealization valid.

ACTUAL ARCH WITH
CEHTEQW7(DOTT€ELJME>

IDEALIZATION
(oHE - OIMBNSIONAL)

The basic shape of the arch - almost a parabola - was chosen
because no bending forces are created in it from a uniform load.
Recalling the analysis of the George Washington Bridge where
the cables resisted only tensioh and hung in a parabolic shape
under a uniform load, one can S€€ the inverse of this principle
in a parabolic arch. If a cable resists only tension from a
uniform load, the arch will resist the opposite - only com-

pression - from & uniform load.
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CABLE 1N TEMSION ARCH I COMPRESSION

Bending forces are not created in either structure from a uni-
form load. Non-uniform loads will cause the flexible cable to
hange shape to maintain pure tension forces, but the stiff
arch, which cannot change its shape, must be strong enough to
resist concentrated, varying loads and keep jts shape. This
will be further investigated in the analysis. At this point

one must only realize the purpose of the parabolic shape.
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The derivation of the shape can be found in the analysis of the
Chiasso Warehouse shed.

The bridge was designed with the three hinges - one at
each springing (end) and one at the crown (top). In the actual
structure the hinges are made by decreasing the concrete section
to the absolute minimum that is necessary to resist the compres-
sive forces in the_concrete.5 This analysis idealizes these
hinges with the simpler, pinned hinges which are absolutely

free to rotate and cannot transmit any bending moment forces.

i
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ACTUAL SPRINGING HINGE IDEALITATI\ON
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ACTUAL CROWN HINGE IDEALIZAT IoN

Incorporating three hinges into the structure allows the two
supports to move relative to each other without creating any
stresses in the arch itself. This is illustrated in the follow-

ing diagrams where one of the supports moves while the other
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remains fixed. (This would occur if the foundation should settle

or even if the mountain should move.)
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Support movement does not stress either half of the arch; the
hinges merely adjust to the new support conditions. This flex-
ibility is especially important to compensate for temperature
changes in the bridge itself; the arch can either shrink or
expand without creating internal stresses. The hinges also
keep the overall arch from experiencing bending moments created
by a large concentrated load on either half of the arch. If
half of the arch is under a load, the hinges do nct transmit
any bending moments, so the other half does not experience any
bending stresses. Also, with hinged supports, no bending
moment reactions are created. :

The dimensions of the idealization of the bridge are taken

from the actual bridge:6

Aemax - 42.6 F1

Vs 4
[
' {- 295 F1 z
-
At the quarterpoint the depth, do’ is three-fourths of the maxi-
mum, dmax = 42,6 feet, beecause the arch is idealized as a para-

bola. This gives a depth, dc’ of
: 38 4 = k(405 Tens) = 31,95 Pawt,

max
The actual arch has basically these same dimensions as well as
section dimensions (the idealization is one-dimensional).
(Refer to the diagram at the top of the next page.) The second
diagram on the next page illustrates the quarterpoint section.
This section has an area of
A= 2(0.623(12.4808t" + 2(0.58)(12.17)8%

= D9, BfET & UeYIin”
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The flanges each have an area of
A = (0.62)(12.46)ft°
= 7.730t% = 1113in?
depth of the section is between the midpoints of the flanges:
d.= 1R. 79 feet.

At the crown the section is the rectangle of concrete in
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the hinge.
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The area of this concrete is
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At the springinz hinge the rectangular area has the following
dimensions:
_«J j
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The arez of concrete at the springing is then
2
Ao = (0.79)(19.68)ft
. 4 KA
= 195 ft° = 2240 in .
Lozads

Three loads act on the bridge: dead and live loads from
the weight of the bridge and from the traffic and snow, re-
spectively. The dead load is idealized as being distributed
uniformly along the bridge span although it is actually gcrezter
where the arch is deeper and where the verticalsare longer.
Mall Cart found o tatal Head load of nearly 1680 ®iba.’ 1In hia
calculation this was not uniformly distributed, but for simpli-
city this analysis assumes *hat it is: :

g = 1680 kips/29. feet = 5.7 kips/foot.
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glects the snow load for simplieity. The live traffic loads
are not so easily defined as they constantly change with the
traffic traveling over the bridge. However, large bending
stresses are created in the arch when live loads are applied
the quarterpoints.8 This would happen on the actual .bridge
when a large load, such as a truck, has traveled either one or
three quarters of the way acrosss. This analysis uses two
point loads of 55 kips at each quarterpoint to create some of

the larger stresses that could occur in the bridge.
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Wind loads are not considered in this analysis. Although
there is very little area of bridge facing the wind, there are

still wind forces on it. These are resisted by increasing the

width of the arch - it increases near the springings, as can

be seen from the plan.9 (This is a horiozontal example of the
I'.)
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principle that was demonstrated by the Eiffel
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The live load considered has a total of 110 kips and the
dead load has & total of 1680 kips. The total load is, there-
fore,
2 = 1680 kips + 110 kips = 1790 kips.
T T.; ':' t
Recalling the discussion of the geometry which said that the




arch takes all the dead load (and uniform loads, e.g., snow)

in compression because of its parabclic shape, one can see
that these create the largest internal force. This force is
guite large enough to overcome any bending forces created by

the non-uniform live loads and thus prevent any tension forces
from being created in the concrete structure; this will be

demonstrated in the analysis.

Reactions

A dead load of 1680 kips and a live load of 110 kips act
vertically downward and must be resisted by vertical reactions
in the supports. The reactions and forces due to dead and live
loads will be kept separate for clarity since they are distri-
buted differently and therefore have reactions that act at
different angles. The reactions are found by taking moment
balances about support A (none of the hinges can resist any
moment). The dead load is idealized as a point load of Q =
1680 kips acting at the midpoint of the bridge.

due to dead load:

EHA 0wl F2) e VBdE
due to live load:
ZM, = 0 = P(/4) + P(3¢/4) - Vgt
When these equations are solved with P = 55 kips, Q = 1680 kips
and [ = 295 feet, Vgq is 840 kips and Vg is 55 kips. Vertical

equilibrium finds VAd and UAl egual to UBd and VBl' respectively.
7 = 0= 0 = VAd - VBd

\Ir - - - - ! -
ZV 0 iy kAl vBl

(The diagram at the top of the next paée illustfates how the
vertical reactions are found.)

To support the arch and its inclined axial force, the abut-
ment must have horizontal reactions as well as vertical ones.
These are found using the moment balance prinicple; one 1; taken

about the crown hinge - point C - using one side of the arch.
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VERTICAL- REACTIOMS:

P=ss5k. P=s5K.
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first done with the dead load where QﬁX2 = 840 kipn.
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Substituting in the known values of V,r» Qn and 4 one finds HAd

B, = (840k)(147.5ft) - (840k)(73. 75€1t) |
= 1455 kips
To create horizontal eocuilibrium, the reaction at the other
support, point B, must be equal since there are no other hori-
zontel forces, loade or reactions f
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Haop = 1455 k. Hg o= 985 K

The horizontal and vertical reactions just found can be thought

of as components of an overall reaction.

The magnitude of the diagonal reaction is found from its compo-
nents from the formula:

I = B aegsas UAdsin&

“Ad

Ad
where ®, the angle that the arch meets the supports, is found by
ten O = NIE = BOFYL55 = 0977
b= AanT 10.977) = B0%,
Then, de = {1 E55% JLeos 30°) + (840k)(sin 30°)

= 1680 kips.
This procedure is repeated using the live loads; the moment bal-

ance is set up and solved in a similar manner:
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The resulting diagonal force is

N1 = chosw + Vlsin&
- 1885 {con 38%) + (58k)(=in 30°)
= 110 kips.

The diagonal reaction, N, created by a uniform locad on a para-
bola acts along the axis of the arch. The diagonal reaction

to concentrated loads, like the live loads, will not; it will
have a slightly different angle. This is because a parabola is
the ideal shape for supporting uniform loads, not concentrated

ones.

Internal Forces

The loads and reactions can now be used to find the inter-
nal forces and to explain the shape of the arch more blearly.
First the axial and shear forces are investigated, and then
the bending moments. The dead and live loads will be considered
separately in the investigation of the axial forces because
the reactions and forces are somewhat different. The dead
load is uniform, whereas the live load is concentrated; differ-
ent types of loading create slightly different internal forces
and reactions at different angles, so the loads are kept sepa-
rate. The reactions are equal to the diagonal forces at the-
points where the arch meets its supports. The vertical force
component decreases along the arch, whereas the horizontal com-
ponent remains the same all along the arch. No horizontal loads
are applied so the force is constant all along the entire
span. At any point there ijs a compressive force of 1455 kips +
95 kips, the horizontal feorces from dead and live loads re-
spectively.

The vertical components vary as the shear force varies
along the span. At the supports, the vertical reaction, the

1

shear force al
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vertical component cf the axial force, and
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s: 840 kips from the dead load and 55

value kips

e load. The dead loaed shear forces (or the vertical
f +he diagonel force) can be found anywhere along

r the formuls for shear force in a uniformly loaded

= qltf2 » %K},

1osd of ¢ = 5.7 kips/foot, the following shear die-

drawn:
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The concentrated live loads will create uniform shear
forces between themselves and the supports. There is no shear
in the middle of the arch between the point loads, and the re-

sulting shear diagram is shown:

+55¢. l.
SHEAR I 31 T TS 6 > tlI_IrI[IIE]E -
M‘E l e "'55‘.-

These shear diagrams are superimposed to find the actual shear
from both loads. (The total shear force diagram is at the top
of the next page.) '

As mentioned before, the value of the shear is the value

of the vertical component of the diagonal force. These vertical

values are used with the constant horizontal components - 1255
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SHEAR
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and 95 kips - and with the angle of the slope of the arch, to
find the diagonal force at any point from the formula:
N = H(cos®&) + v(sinx).
The forces at the springings of the arch are equal to the

diagonal reactions found earlier: K__ . = -1680 kips from the
b ol
dead load and Nsp e -110 kips from the live load. At the
»

quarterpoint, where the vertical components are 420 kips (dead)
and 55 kips (live), the angle is

tan & = 24/t 3 &« $h 3.,
The axial forces are then

N . = (-1455k)(cos 16,1%) + (-420k)(sin 16.1°)

0d
= =1514 kips.

<98k (Bom 16.1°) ¢ (~55k){ein 16.17)

-106 kips.

At the crown, where there is no vertical component, the axial

=
1]

1

forces are equal to the horizontal force: Ncr 4 % -1455 kips

3 . S 4 : :
(dead), and Lcr,l 95 kips (live).

To find the total axial forces, the_bendiﬁg moment created
by the live loads must be considered also. A uniform load on
a parabolic arch does not create bending forces, only axial
forces - those have been found. Therefore, only the 55 kip
point loads must be analyzed to find bending forces. This
is done in two steps: first the bending. moments created by the
live load alone are found, and then these are superimposed over

the bending moments created by the horizontal reactions. Two
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point loads at the gquarterpoints create a maximum bending moment

of P{/L which is positive and constant between them.

I | Pe/4 = (55K)(295¢4)/4 = 4050 kips.
:; P P
o ) v
Va Ya |

PENDIMNG
MOMEMT

! - k +PL/4A 4050 KFT

(This bending‘moment diagram 1is jdentical for either a flat or
an arched span.) The bending moments from the horizontal re-
action are described by

M = de ;
where dx is the depth of the arch at any peint 'x' along the
span. The bending moment i§ a maximum at the middle, and the
diagram is the same parabolic shape as the arch. The bending
moments are all negative because the horizontal reaction is
acting counterclockwise whereas the load is acting clockwise
(around the left-hand support).

M = -Hd_ = (-95k)d,

A where 4. » & " 42.6ft, M = -4050ft-kips,

i . L ! e -ki

| where d_ Se. Fd = BYe3X0N M 3040ft-kips.

%; — 4050 K-FT

! i ~3040K:FT
BENDING i ' |

Hi MOMENT : : |

e . [ 4 .[ &

| 5 s by >4 L

The overall bending‘moment from the live loads is found by adding
! these two bending moment diagram. (The superposition is shown

at the top of the next page.)
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The remaining moment is positive. One can see how the actual
shape of the arch follows this bending moment diagram for one
of the most critical live load cases. This again illustrates
the principle found in other analyses that an efficient struc-
ture imitates the shape of its bending force diagram. By
proportioning a structure in this manner, there 1is enough
material to resist forces where they are high, and conversely,
where forces are low, there is not an excess of material.
Since the bending moment is greatest at the gquarterpoints,

these are the critical sections at which to analyze the axial
force created by the bending moment. Using the formula from
earlier analyses, 1T = -C = M/d, with the M just found and the
value of d at the gquarterpoint section, 12.8 feet, the tension
and compression forces resulting from the bending are found:

+14/d = 1010ft-kips/12.8 feet = 179 kips,

T = 479 kipa; © = «79 kips.
The tension occurs in the bottom flange and the compression in

the top flange.

c=-79 k.

Ity 1279
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Once the stresses are found for the axial force, they can be

combined to find totals for the bridge.

Internal Stresses
The axial stress at the springings is calculated first.

Axial forces of Nsp = -1680 kips and Nsp 7 = =110 kips were
found from the dead and live loads. The area of concrete at

the springing is Asp = 2240in“. Then the axial stresses from
each load are:
2
= N = 2240in
fsp,d Isp,d/Asp 1680k /22401
B 20,75 ksl = <750 pBi, 4
=+ = c : i
L sp,l/Asp 110k/2240in
= 0,049 ksi = =49 psi
Then, at the springing, there is a total compressive stress of
fsp = -750 psi - 49 psi = =799 psi
The same calculations are repeated to find the axial stresses
2
b ) % e ¢4
at the crown, where Acr {ITEE el - Icr,d 1455 kips and
g = —OF 13 .
hcr.l = -95 kips: 5
= N e, 551 E 3
fcr,d Ncr,d/ﬂcr 1458k /17354n
= 0,839 ksi' = ~B839psil.
:'-: = s '2
fcr,l I'cr‘,l/Acr 95k/17351n
= «0. 055 kel = =55 pal.
The total compressive stress at the crown is
fcr = =839 psi - 55 psi = -894 psi.

The stresses at the quarterpoints are found from the axial

compressicn forces from the dead and live loads (qu = =1514
kips and N ., = -106 kips) and the area of that section found
earlier (A  =4291 in“). The axial forces found from the dead

and live loads act across the entire section, therefore, the

dead load stress is
= -1514%k/4291in%

£ =N fa
! 3 = 49 &
gsd,ax gd g
= «0,352 k8l = =333 psi,
and the live load stress is
v
= A= «1DOK/4291in
G",l,a} C;l/ 3_ /‘Zr 7
= <0025 WE3 = =29 psi.
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Together these create a total stress of -378 psi. The axizl

force created by the bending force from the live loads - 179 kips -
5 R e oL :

acts over the flange with an area of 1113in~. This yields a

S T +79k/1113in% = +71 psi,

1

3
T = 471 psi in the bottom flange, and
= -71 psi in the top flange.

g

These values must be added to the uniform stress of -378 psi across
the section from the dead and live loads to find the total

stress at the quarterpoints:
top flange: -378 psi - 71 psi = =449 psi (maximum)
bottom flange: -378 psi + 71 psi = -307 psi (minimum).

In this analysis many assumptions have been made for clarity
and simplicity, and, while they are not incorrect, they do bring
a certain amount of variance into the final answers. A more rigo-
rous analysis with fewer assumptions has led to values very close
to the ones Maillart determined while designing the 'bridge.‘IO
The more thorough analysis used the actual dead load from the
shape of the arch. The analysis did not use the parabola as-
sumed here, but the pressure line of the actual arch, which is
the line of the bending moment diagram created by the actual
loads. This line is slightly different than the line of the
centroid of the section and would have resulted in no bending
stresses from the uniform load. In the rigorous analysis as well
as Maillart's analysis, some bending from the dead load was
found. In addition greater bending forces were created by an
assymetrical live load. TL.. rigorous analysis_used a single
point load, whereas Meillart found a segment of a uniform live
load that created the absolute maximum live load moment. Both
analyses used more accurate section - the dimensions were not
jdealized - and this resulted in more precise bending moments.

The rigorous analysis yielded results at the quarterpoints of

GED
]

-675 psi and

)
n

and Maillart found corresponding values of

-
-]
~0




-645 psi and

H
I

max

1

4 +15.6 psi.

min
small enough to be taken by the

(The values of tension are
much closer than the ones from

concrete.) These values are

the analysis performed here. The greater accuracy can be attri-

buted to the greater detail and thoroughness of the analyses.
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Summary of Formulas

Geometry:

formula of parabola used to idealize the arch:

a (ax(€-x)/82) = 42.6(4x(295-x)/295%)

1

d
%

= 0.002(295-x)x
angle of the parabola at any point

tan® = (4d_/0)(1-2x)/L = 0.002(295-2x)
gquarterpoint:

dy 3/%(d o)
areas: Z (height) (width)
Loads:

’:J = 3
“q qd(ﬂ,

Ql = 2P
~
ot

Reactions:
M = =T 5 e
sk, = 0 = Q(L/2) -Vg,(l)

=4 =0« P(0/4) + P(3L1/4) - Vge (L)

BVg=0n e Vis o Vpg

:£V1 =i =P e Vﬂl - VBl

HAd(d) = V,4(4/2) - QqlC/8)

ZH =0 =H;, - Hg por gither dead or live loads
g () = v, 0872 = RUE 4] '

N = E(cos® ) + V(sin &) where &= tan'j(V/H)

Internal Forces:

shear force = vertical force =

S = gle/2 - x)

N = H(cosx) + V(sin& ) where H is constant, V = shear
force and is found from the eguation in "Geometry'.

we B ALY - Hd_ fep the live load moment

+T = =0 .= &1/ 4




Internal Stresses:

axial (for springing, crown or quarterpoint)

fdead = thu ana flive = thA

bending (live load at the quarterpoint)

(T -or.C)/A

fq,l,bend': flange

axial and bending stresses superimposed to

182
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Problems:

‘] .

For the parabolic 3-hinged arch with a span of [ = 524 feet
and a midpoint rise of 187 feet, compute the midpoint,
quarterpoint, and support compression axial forces for a
load of 3.6 kips/foot uniformly distributed along a hori-

zontal line.

A three-hinged arch spanning 200 feet is uniformly loaded

vertically by 2 kips/foot. The rise at the midpoint is

20 feet, and the arch is constructed so that its form

counteracts the bending moment due to the uniform loading.

a. At the gquarterpoint, compute the horizontal and verti-
cal forces and the resulting axial force in the arch.

b, This arch is now loaded by two concentrated 10 kip
loads, one at each quarterpoint. At the quarterpoint,
calculate the horizontal and vertical forces and the
bending moment in the arch due only to the concentratéd
loads. |

c. Draw the final moment diagram resulting from the two
concentrated loads. How can the arch be designed to

resist this moment?
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provided from a biographical

Background on the bridge i
n his book, Robert Maidilart,

point of view by Max Bill
3rd edition, 1969.

s
i

from an architectural point of

The bridge is discussed
Time and Architecture,

view in Siegfried Giedion's Space,
5th edition, 1967, pp. 450 -476.

The bridge is considered as a work of both art and enigneer-
ing in David P, Billington's Robert Maillart's Bridges:

The Art of Engineering, Princeton, New Jersey: Princeton
University Press, 1979.

Ibid., This book references actual load tests performed by
Vikro Ro% on the Salginatobel Bridge: "Bericht zu den
Ausfuhrungsplanen der Strassenbrucke uber das Salginatobel,!
sent to J. Solen and dated July 20, 1929, 5 pages, Princeton
Maillart Archives.

hinges were taken from this

il d

Ibvid., The drawings of these
source, pp. 86 - 87.

Billington, David P

The dimensions were taken from:
S+pyctures and the Urban Environment:

»
Structural Studies 1982,

Princeton University Department of Civil Engineering.
found from "Official Documents for

These dead loads were
Rackground Pacers for the Second

the Arch Analysis", in

National Conference on Civil Engineering: Fistory, Heritage,
end the Humanities II, October %, 5, 6, 1972, Princeton
University, Zditied by John F. Abel, Conference Co-directors:

NDavid P. Billington and Robtert Mark, Conference sponsored
by the National Endowment for the Humanities.

the worst axial stresses,
of the bridge create the
found and used these in
the live load

4 large uniform live load creates
but live loads over certain part
worst bending stresses. Maillart
his analysis. To simplify the situation,
configuration from David P. Billington's Structural
is used in this analysis.

The wind load considerations for a bridge like this are
different than those for a bridge like the George Washing-
ton Bridge. Suspension bridges are flexible by nature (and
usually have much longer spans) and are therefore more
susceptible to dangerous wind influences. The Salginatobel

Bridge is stiff, so wind forces will require an analysis
SimYiar bo tMet uped on the Eiffel Tower.

This analysis is performed in: Billington, David P., Siruc-
tures and the Urban Envirorment: Structural Studies 196<.
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